You are here
Home ›Narrow Search
Now showing results 1-6 of 6
In this lesson about cosmic rays, students will describe why cosmic rays are dangerous to astronauts. Includes information about student preconceptions. This is activity 3 of 4 from The Cosmic Ray Telescope for the Effects of Radiation (CRaTER).
Working in pairs, students will create experimental conditions in terrariums in order to study what plants need to live. Variables to study include the presence or absence of soil, water, and sunlight. Students will record the growth of radish... (View More) plants as well as observations of "the water cycle" in their terrariums. At the conclusion of their experiments, students will share their results with the class and discuss how water, Earth materials, and air are all necessary to support living things. The activities use commonly-available or inexpensive materials (e.g., chart paper, clear soda bottles, potting soil, radish seeds, paper towels, water, tape, foil, and index cards). This is the first of three sets of learning activities that are companion activities to the Elementary GLOBE children's book, All About Earth: Our World on Stage. Includes a teacher implementation guide. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
In this activity, student teams design small-scale physical models of hot and cold planets, (Venus and Mars), and learn that small scale models allow researchers to determine how much larger systems function. There is both a team challenge and... (View More) competition built into this activity. Experimental findings are then used to support a discussion of human outposts on Mars. The resource includes an experimental design guide for students as well as a handout outlining a method for the design of controlled experiments, and student data sheets. Student questions and an essay assignment are provided as classroom assessments. This is Activity A in the second module, titled "Modeling hot and cold planets," of the resource, "Earth Climate Course: What Determines a Planet's Climate?" The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)
In this activity, students build a simple computer model to determine the black body surface temperature of planets in our solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. Experiments altering the luminosity and... (View More) distance to the light source will allow students to determine the energy reaching the object and its black body temperature. The activity builds on student outcomes from activity A, "Finding a Mathematical Description of a Physical Relationship." It also supports inquiry into a real-world problem, the effect of urban heat islands and deforestation on climate. Includes a teacher's guide, student worksheets, and an Excel tutorial. This is Activity B of module 3, titled "Using Mathematic Models to Investigate Planetary Habitability," of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)
In this activity, student teams learn about research design and design a controlled experiment exploring the relationship between a hypothetical planet, an energy source, and distance. They analyze the data and derive an equation to describe the... (View More) observations. Includes student data sheets, a teacher's guide, and a tutorial on how to use the spreadsheet program Excel. This is Activity A in module 3, titled "Using Mathematic Models to Investigate Planetary Habitability," of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)
In this activity, student teams create a knowledge map of the essential characteristics or factors of a planet with a habitable climate, identifying range of inputs, outputs and variables of a planetary environmental system. Identified... (View More) characteristics are compared to extreme environments on Earth, such as the Antarctic or the Sahara desert, and are used to consider the real life challenge of searching for life in extreme environments. The resource includes a student data sheet, questions, teacher's guide and scoring rubric. This is Activity B of two activities in the first module, titled "Temperature variations and habitability," of the resource,