You are here
Home ›Now showing results 1-10 of 14
This is an online lesson associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. Outside of Solar Week, information, activities, and... (View More) resources are archived and available online at any time. This is an activity about measurements of solar activity. Learners will observe an image of the Sun and sketch major features, plot data to begin to recognize patterns of solar activity, look for long-term patterns in graphed data, compare X-ray and visible light images of the Sun to find solar features common to both sets of images, and make a prediction of what the Sun will look like in a visible light image after observing an X-ray image taken on the same day. This activity is scheduled to occur during Monday of Solar Week. (View Less)
This is the culminating lesson in the MMS Mission Educator's Instructional Guide. Learners will choose and complete three activities about the MMS mission. Activity formats can include creating videos, composing songs, developing written materials,... (View More) constructing models, investigating current events, utilizing mathematics to explain concepts, and more. Depending on the project(s) chosen by a student, the activity may require student access to internet accessible computers. The MMS Mission Educator's Instructional Guide uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
This is an activity about the relation between day length and temperature. In one team, learners will create and analyze a graph of hours of sunlight versus month of the year for a number of latitudes. In another team, learners will graph... (View More) temperature versus month for the same latitudes. The teams then compare data and draw conclusions from their analyses. (View Less)
This is an activity about the period of the Sun's rotation. Learners will use image of the Sun from the SOHO spacecraft and a transparent latitude/ longitude grid called a Stonyhurst Disk to track the motion of sunspots in terms of degrees of... (View More) longitude. Using this angular motion measurement, learners will then calculate the sunspot’s angular velocity in order to determine the rotation period of the Sun. This activity requires access to the internet to obtain images from the SOHO image archive. This is Activity 4 of the Space Weather Forecast curriculum. (View Less)
This is an activity about how the Sun can affect the Earth's atmosphere, specifically the ionosphere. Learners will use real data from a Sudden Ionosphere Disturbance Monitor, or SID Monitor, to identify the signatures in the graphed data that can... (View More) be used to determine the times of sunrise and sunset. Although the SID monitors are designed to detect SIDs caused by solar flares, they also detect the normal influence of solar X-rays and UV light during the day as well as cosmic rays at nighttime. There is a distinct shape to a 24-hour SID data graph, with unique shapes, or signatures, of the graph appearing at sunrise and sunset.This activity is part of the Research with Space Weather Monitor Data educators guide. Use of and access to a Stanford Solar Center SID monitor and the internet is encouraged but not required. Locations without a SID monitor can use sample data provided in the educators guide. (View Less)
This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its... (View More) intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide. (View Less)
This is an activity about the periodic reversals of Earth's magnetic field. Learners will graph the frequency of magnetic pole reversals over the past 800,000 years and investigate answers to questions using the graphed data. This is Activity 8 in... (View More) the Exploring Magnetism on Earth teachers guide. (View Less)
This is an activity about the magnetic deflection. Learners will observe and measure the deflection that an iron mass causes in a soda bottle magnetometer and plot the data. The data should show the inverse-square cube law of change in the magnetic... (View More) field. This is the twelfth activity in the guide and requires prior use and construction of a soda bottle magnetometer, as well as a six to ten pound container of iron nails (or an equivalent iron mass). (View Less)
This is a lesson about the Kp index, a common numerical indicator of magnetic storminess. Learners will access and analyze Kp index plots of magnetic storm strength and determine the relative frequency of stronger versus weaker magnetic storms... (View More) during periods of higher and lower solar activity. This is the fifteenth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)
This is a lesson to introduce the Kp index, a common numerical indicator of magnetic storminess. Learners will access and analyze Kp index plots of magnetic storm strength and determine the relative frequency of stronger versus weaker magnetic... (View More) storms. This is the fourteenth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)