You are here
Home ›Now showing results 1-10 of 13
This is an activity about image resolution. Learners will recreate a solar image taken by the Solar Dynamics Observatory (SDO) using various sizes of building bricks, and discuss how their recreations relate to image resolution. Learners will also... (View More) compare SDO images to solar images from older spacecraft to see how improved technology helps scientists learn more about the Sun. (View Less)
This is a lithograph about NASA's Magnetospheric Multiscale Mission, or MMS. Learners will cut out and assemble a colorful 3D model of an MMS spacecraft. Web links, additional facts, and QR codes are included for audiences to access more information.
This is an activity about the rotation of the Moon. Learners use a penny and a quarter to model that the Moon does indeed spin on its axis as it orbits the Earth. They find that the Moon keeps the same face toward the Earth, but receives... (View More) illumination from the Sun on all sides in turn. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
This lesson includes a demonstration to show why the sky is blue and why sunsets and sunrises are orange. Learners will use scientific practices to investigate answers to questions involving the color of the sky, sunsets, the Sun, and oceans.... (View More) Requires a clear acrylic or glass container to hold water, a strong flashlight, and powdered creamer or milk. (View Less)
Learners model how the Moon's volcanic period reshaped its earlier features. The children consider that the broad, shallow impact basins contained cracks through which magma seeped up. A plate in which slits have been cut is used to represent an... (View More) impact basin and a dish of red-colored water is used to represent the pockets of magma within the Moon's upper layers. When the model impact basin is pressed into the "magma," "lava" fills in the low areas through the same process that produced the dark patches, or maria, on the Moon. Children may examine a type of Earth rock (named basalt) that is also found on the Moon and that would have been shaped by the processes explored here. This station investigates the Moon's "teen years," when it was one to three billion years old. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
Learners will model ancient lunar impacts using water balloons. By measuring the diameter of the crater area, they discover that the Moon's largest impact basins were created by huge asteroids. The huge basins formed on the young Moon, but through... (View More) processes investigated in Moon Ooze, they later became filled in by the dark maria now visible on the Moon. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
This is a collection of outreach resources about the Sun that are meant to be used in informal education settings. This toolkit was originally designed for NASA Night Sky Network member clubs and the Astronomical Society of the Pacific's Astronomy... (View More) from the Ground Up network of museum and science center educators. The toolkit includes background information about the Sun, magnetic fields of the Earth and Sun, and space weather, activity suggestions, and detailed activity scripts. The themes of this toolkit address both the constant nature of the Sun as a reliable source of energy and the dynamic nature of the Sun due to its changing magnetic fields. The activities and related materials in this collection include The Sun in a Different Light - Observing the Sun, Explore the Sun cards, Magnetic Connection, the Space Weather PowerPoint, Protection from Ultraviolet, and Where Does the Energy Come From cards. These activities can be done separately or as a group as part of an informal education event. Institutions that are not part of the Night Sky Network will need to acquire the various materials required for each activity. (View Less)
This is an activity about the motion of the Earth around the Sun. Learners will act out the motions of Earth as it orbits around the Sun over the course of one year, starting with modeling one day, then one year, and finally the months.
In this hands-on activity, learners begin by estimating the size of each planet in our Solar System and Pluto and making each out of playdough or a similar material. Then, learners follow specific instructions to divide a mass of playdough into the... (View More) size of each planet and Pluto and compare the actual modeled sizes to the students' own predictions. This activity requires a large amount of playdough material per group of learners. Three pounds is the minimum amount required for each group. (View Less)
This is an activity about the concept of direct versus indirect sunlight. Learners construct and use a sun angle analyzer to investigate the effect of angle on area illuminated. The fraction of light on each square of the analyzer is then calculated... (View More) and compared. A discussion at the end relates the results to the amount of sunlight falling on different parts of the Earth and the effect this has on temperature and seasons. Reprinted with permission from the Great Explorations in Math and Science (GEMS). (View Less)