## You are here

Home ›Now showing results **1-7** of **7**

This is a lesson about magnetism and solar flares. Learners will evaluate real solar data and images in order to calculate the energy and magnetic strength of a solar flare moving away from the Sun as a coronal mass ejection. This is Activity 3 in... (View More) the Exploring Magnetism in Solar Flares teachers guide. (View Less)

In this problem set, learners will use a map of satellite data on Earth's surface magnetism and determine coordinates and distances for variations in magnetism. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth... (View More) Science and Climate Change. (View Less)

This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is an activity about vectors and velocity. It outlines the addition and subtraction of vectors, and introduces the application of trigonometry to describing vectors. The resource is designed to support student analysis of THEMIS (Time History... (View More) of Events and Macroscale Interactions during Substorms) Magnetometer line-plot data. Learners will complete worksheets consisting of problem sets that allow them to work with vector data in magnetic fields. This is activity 15 from Exploring Magnetism: Earth's Magnetic Personality. (View Less)

This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its... (View More) intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is a resource that explains the rationale behind the multiple time zone divisions in the United States. Learners will work through a problem set to practice calculating the time in one time zone, given the time in another time zone. This is... (View More) activity 9 from the educator guide, Exploring Magnetism: Magnetic Mysteries of the Aurora. (View Less)

This book offers an introduction to the electromagnetic spectrum using examples of data from a variety of NASA missions and satellite technologies. The 84 problem sets included allow students to explore the concepts of waves, wavelength, frequency,... (View More) and speed; the Doppler Shift; light; and the energy carried by photons in various bands of the spectrum. Extensive background information is provided which describes the nature of electromagnetic radiation. (View Less)