You are here
Home ›Now showing results 1-10 of 10
This unit consists of five activities, all of which focus on the response of plant life-cycle events to climate change. Students participate in discussions, field observations, data collection and analyses, plant identification, seed dispersal... (View More) comparisons, and graphing and analyses of plant phenology (timing of life-cycle events). Project BudBurst, a citizen science project which studies the impact of climate change on phenology, is integrated into this unit. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This curriculum uses an inquiry-based Earth system science approach, and leverages Project BudBurst, a citizen science phenology project, to engage students in authentic research on plant and ecosystem responses to climate change. Students collect... (View More) local data then analyze that data in the context of NASA regional and global data sets and satellite imagery to understand their data in personal, regional, and global contexts. The curriculum is divided into four units: The Earth as a System; Identifying the key changing conditions of the Earth system; Earth system responses to natural and human induced changes; and Predicting the consequences of changes for human civilization. Each unit consists of several activities with accompanying teacher answer sheets. (View Less)
Materials Cost: $1 - $5 per group of students
This unit consists of two parts, each with several activities which require students to participate in investigations, discussions, computer data analysis, role-playing, and research. In Part 1, students examine the roles of Earth's energy balance... (View More) and the greenhouse effect in creating and affecting climate. Part 2 focuses on the biosphere as a system. Students examine the interactions of organisms, the effects of climate change on food webs, and the importance to humans of a healthy, intact ecosystem. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This activity is about viewing the planet Mars (and others) through a telescope. Learners will go outside on a clear evening to view the planets and other celestial bodies for themselves. Using sky charts and other resources, and possibly in... (View More) partnership with a local astronomical society or club, children and their families view Mars with binoculars and/or telescopes. The children who have participated in the other Explore: Life on Mars? activities may serve as docents at this public, community event, sharing what they have done and learned about what life is, the requirements for life, and the possibility for life on Mars now — or in the past! It is recommended that the viewing event be paired with the hands-on experiment within the Searching for Life activity if space and time allow. It also includes specific tips for effectively engaging girls in STEM. This is activity 8 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
This module focuses on ultraviolet radiation on Earth and in space and how it affects life. Learners will construct their own "martian" using craft materials and UV beads. They will explore how UV radiation from the Sun can affect living things,... (View More) comparing conditions on Earth and Mars, and then discuss ways in which organisms may protect themselves from UV radiation. They will then take part in a Mars Creature Challenge, where they will change their creature to help it survive harsh UV conditions — like on Mars. They will then test their Mars creatures by subjecting them to different environmental conditions to see how well they "survive" in a martian environment. This investigation will explore shelter and protection as one of life’s requirements and how Earth’s atmosphere protects life from harmful UV radiation. It also includes specific tips for effectively engaging girls in STEM. This is activity 5 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
This is an activity designed to develop a working definition of life. Learners will conduct a simple experiment, looking for signs of life in three different "soil" samples. The experiment introduces children to the difficulty that scientists face... (View More) in defining life. By observing the soil samples, participants try to determine if any contain signs of life and work to identify, refine, and create a set of characteristics that may be used to identify living versus nonliving things. The activity concludes with the development of a group definition of life. This group definition will be referred to in subsequent activities. It also includes specific tips within each activity for effectively engaging girls in STEM. This is activity 1 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
This is an activity about the requirements of life. Learners will explore what living things need to survive and thrive by creating and caring for a garden plot (outdoors where appropriate) or a container garden (indoors) at the program facility.... (View More) The garden will be used to beautify the facility with plant life with many planting and landscaping options provided. Children will consider the requirements of living things, compare the surface conditions on Mars to those found on Earth, view images/video of a NASA Astrobiology Institute "garden" where astrobiologists are studying life under extreme conditions, and consider the similarities and differences in the type of life that would be possible on Mars as compared to their garden on Earth. It also includes specific tips for effectively engaging girls in STEM. This is activity 3 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
This activity focuses on the relationship between science of looking for life and the tools, on vehicles such as the Mars Rover, that make it possible. Learners will create their own models of a Mars rover. They determine what tools would be... (View More) necessary to help them better understand Mars (and something about life on Mars/its habitability). Then they work in teams to complete a design challenge where they incorporate these elements into their models, which must successfully complete a task. Teams may also work together to create a large-scale, lobby-sized version that may be put on display in the library to engage their community. The activity also includes specific tips for effectively engaging girls in STEM. This is activity 6 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
This is a set of three activities about how scientists study other worlds. Learners will explore and compare the features of Mars and Earth, discuss what the features suggest about the history of Mars, and create a model to help them understand how... (View More) scientists view other worlds. The activities help to show why scientists are interested in exploring Mars for evidence of past life, and address the question: "Why are we searching for life on Mars?" It also includes specific tips within each activity for effectively engaging girls in STEM. This is activity 4 in "Explore: Life on Mars" that was developed specifically for use in libraries. (View Less)
This collection of activities presents learners with intriguing questions about the universe and provides an opportunity to explore topics related to the search for life beyond our own planet. The collection includes eight existing classroom... (View More) activities that have been adapted for after school school settings. Each activity can be completed in one hour, however some activities require advance preparation. The activities also require materials that may need to be gathered by the instructor. However, these include commonly available supplies. The activities in this collection are targeted for 5-12 year olds. Separate instructions for the different age groups are provided as appropriate. (View Less)