You are here
Home ›Narrow Search
Now showing results 1-8 of 8
This iOS app for iPhone, iPad and iTouch, allows families and educators to investigate and learn about the Sun at home, at school, or anywhere. It provides 13 free, easy to use, hands-on activities, plus live images of the Sun from NASA's SDO... (View More) satellite, videos of the Sun, and more. Each activity includes material lists, step-by-step instructions, and detailed explanations. Some of the activities and media pieces are also available on the project website. The activity materials are widely available and inexpensive. (View Less)
This afterschool curriculum includes six lessons plus supplementary materials (e.g., videos, PowerPoint presentations, and images) that explore how light from the electromagnetic spectrum is used as a tool for learning about the Sun. The curriculum... (View More) is designed to be flexible to meet the needs of afterschool programs and includes recommendations for partial implementation based on time constraints. It was specifically designed to engage girls in science. (View Less)
This is the second module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and uses online videos, data from the SDO satellite and hands-on activities to explore, research... (View More) and build knowledge about how and why studying the Sun's electromagnetic energy and magnetic fields help scientists better understand the Sun's activity and space weather. Students build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide is included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 2A: The Sun and the EM Spectrum students learn how SDO uses key parts of the Sun's electromagnetic spectrum (EMS) to research regions of the Sun, create an interactive foldable to describe the different wavebands of the EMS, then use real-time SDO image data and the Helioviewer online tool to explore the Sun's regional activity. Tutorials for using Helioviewer and making the EMS foldable are included. Activity 2B: Solar activity and Magnetism has students use information in online videos and slide presentations to demonstrate concepts of magnetism and the relationship between the Sun's variable magnetic fields and sunspots. Activity 3B: Solar Research in Action! Build a Spectroscope has students create a spectroscope to observe the different wavebands of visible light, demonstrate how the Sun emits varying EMS energies, and explain how this information helps scientists understand the composition and activity of both our nearest star, and other stars in the universe. A computer for student-teams and a connection to the Internet are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is an activity about magnetic fields. Learners will study magnetic fields at four separate stations: examining magnetic fields generated by everyday items, mapping out a magnetic field using a compass, creating models of Earth's and Jupiter's... (View More) magnetic fields, and observing aurora produced by magnetic fields on both planets. This activity is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments. (Note: the activity was adapted for informal education from Magnetic Globe, by Sonoma State University, and Exploring Magnetism, by Space Sciences Laboratory, University of California at Berkeley) (View Less)
This is a collection of outreach resources about the Sun that are meant to be used in informal education settings. This toolkit was originally designed for NASA Night Sky Network member clubs and the Astronomical Society of the Pacific's Astronomy... (View More) from the Ground Up network of museum and science center educators. The toolkit includes background information about the Sun, magnetic fields of the Earth and Sun, and space weather, activity suggestions, and detailed activity scripts. The themes of this toolkit address both the constant nature of the Sun as a reliable source of energy and the dynamic nature of the Sun due to its changing magnetic fields. The activities and related materials in this collection include The Sun in a Different Light - Observing the Sun, Explore the Sun cards, Magnetic Connection, the Space Weather PowerPoint, Protection from Ultraviolet, and Where Does the Energy Come From cards. These activities can be done separately or as a group as part of an informal education event. Institutions that are not part of the Night Sky Network will need to acquire the various materials required for each activity. (View Less)
In this hands-on engineering challenge, learners design, build, and improve a model that allows a moving object to change direction using an invisible force. Mimicking the gravity-assisted travel of the New Horizons spacecraft, learners roll a steel... (View More) ball (spacecraft) past a magnet (magnetic field) to hit a target (Mars) that is off to the side. This resource includes a challenge video, leader notes, and handouts. Two supplemental videos are included: 1) the use of gravity assisted travel by NASA's New Horizons mission and 2) NASA aerospace engineer Victoria Garcia describing how she uses virtual-reality tools to design living and work spaces for astronauts. She also talks about not letting her deafness be a barrier in her life. This challenge is part of Mission: Solar System, NASA and Design Squad® Nation, a series of hands-on activities and videos let kids apply science, technology, engineering, and math (STEM) skills to solve design challenges. Introductory resources include information on running a challenge and introducing the design process, and tips for facilitating open-ended challenges. This resource has been vetted as part of the NGSS@NSTA curated collection. (View Less)
Materials Cost: $1 - $5 per group of students
Learners design and build a device that can pass above a surface and detect magnetic fields. This resource includes a challenge video, leader notes, and handouts. Two supplemental videos are included: 1) Measuring Magnetic Fields and 2) NASA flight... (View More) systems engineer Tracy Drain explaining her role on the Juno spacecraft team. This challenge is part of Mission: Solar System, NASA and Design Squad® Nation, a series of hands-on activities and videos let kids apply science, technology, engineering, and math (STEM) skills to solve design challenges. Introductory resources include resources for running a challenge, introducing the design process, and tips for facilitating open-ended challenges. This resource has been vetted as part of the NGSS@NSTA curated collection. (View Less)
Materials Cost: $1 - $5 per group of students
This is an activity about magnetism. In this activity, polystyrene spheres and several strong neodymium magnets are used to represent the Sun and Earth and their distinct magnetic fields. Participants construct and use a field detector to predict... (View More) where the magnetic fields are on the Sun and Earth, and use field bits, which is the term used in the lesson plan, made from the closed staples to form loops and trace the invisible magnetic fields of the Sun and Earth. The activity is designed to be used in an informal public outreach setting, for example as a stand-alone station in a family science day event. It can also be modified for use as a simple classroom demonstration. There are background information sheets provided that can be printed to go along with the activity station. This activity requires two polystyrene spheres, 8 neodymium magnets, epoxy adhesive, wire clippers, needle nose pliers, and acrylic paints, along with other easily obtained materials. (View Less)