## You are here

Home ›Now showing results **31-40** of **50**

This is an activity about vectors and velocity. It outlines the addition and subtraction of vectors, and introduces the application of trigonometry to describing vectors. The resource is designed to support student analysis of THEMIS (Time History... (View More) of Events and Macroscale Interactions during Substorms) Magnetometer line-plot data. Learners will complete worksheets consisting of problem sets that allow them to work with vector data in magnetic fields. This is activity 15 from Exploring Magnetism: Earth's Magnetic Personality. (View Less)

This is a lesson about how magnetism causes solar flares. Learners will set up an electrical circuit with magnets to examine magnetic fields and their similarities to magnetic fields seen on the Sun. Learners should have a conceptual understanding... (View More) of magnetism prior to exploring this lesson. This activity requires special materials including a galvanometer, copper wire, and sandpaper. This is Activity 2 in the Exploring Magnetism in Solar Flares teachers guide. (View Less)

In this activity, students experience a demonstration of light scattering that explains the blue colors in the Intersetllar Medium (ISM) nebulae, and the reddening of stars viewed through the ISM. It also explains the blue appearance of the sky on... (View More) Earth and the reddish appearance of the Sun during sunsets. The demonstration is best done before or during a lesson on the ISM when light scattering is discussed. This activity is one of two supporting the scientific investigation of the ISM, and is linked to reading material, reading review questions and problems, a teacher answer sheet, and glossary. (View Less)

This is a lesson plan for an activity that explores time zone math. Learners will translate their local time to times in other zones around the world and work with the concept of Universal Time, specifically in reference to the reporting,... (View More) description and analysis of solar flares and coronal mass ejections. This is activity 10 from Exploring Magnetism Guide 3: Magnetic Mysteries of the Aurora educator guide. (View Less)

This demonstration shows that similar-appearing lights can be distinctly different, suggesting that the light emitted is generated in different ways. It requires some advance preparation/setup by the teacher and three recommended sources of orange... (View More) light, that can be purchased at a hardware or department store. Includes extensions and additional background information on light generation in a section on underlying principles. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this activity, students compute the strengths of the gravitational forces exerted on the Moon by the Sun and by the Earth, and demonstrate the actual shape of the Moon's orbit around the Sun. The lesson begins with students' assumptions about the... (View More) motions of the Moon about the Earth and the Earth about the Sun, and then test their understanding using an experimental apparatus made from a cardboard or plywood disk and rope. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this demonstration, students experience the Doppler effect for sound. Students can compute the frequency change for motion along the line of sight (LOS) and determine the vector LOS component for motions not exactly on it. A buzzer, battery,... (View More) bicycle wheel, string and a rubber ball and a timer are needed for the demonstration. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This activity lets students measure distances in the classroom using parallax. The exercise can be done either at a high school level using trigonometric functions, or at a middle school level using simple arithmetic approximations to the... (View More) trigonometric functions. A work sheet is provided for the middle-school-level activity.The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

Students will work in teams to create visual models to assist in understanding the volume of surface ozone in the air. Students construct cubes of different volumes and compare them to get a feel for parts per million by volume and parts per billion... (View More) by volume. Resource includes a paper template for creating the cube and a student worksheet. This is a learning activity associated with the GLOBE Atmosphere investigations and is supported by the Atmosphere chapter of the GLOBE Teacher’s Guide. (View Less)

Materials Cost: 1 cent - $1 per group of students

This is lesson to begin learners' thinking about magnetic influence. Learners will watch a classroom demonstration about the effect of magnets on iron filings and then complete a journal assignment to record their reactions and thoughts. This is the... (View More) first activity in the Mapping Magnetic Influence educators guide. (View Less)