## You are here

Home ›## Narrow Search

**Elementary school**

**Upper elementary**

Now showing results **1-10** of **11**

In this lesson, learners will construct a 3D scale model of one of the MMS satellites. After, they will calculate the octagonal area of the top and bottom of the satellites, given the measurements of the satellite. Then, learners will compare the... (View More) octagonal cross-section area of the satellites with the circular cross-section area of the launch vehicle to determine if the eight-sided spacecraft will fit the circular rocket hull. This is lesson one of the MMS Mission Educator's Instructional Guide, which uses examples from the MMS Mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. **Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page).** (View Less)

In this lesson, learners will first watch a video about the orbit and formation of the MMS satellites to learn about their flight configuration. After, they will research similar facts about other types of satellites. Next, learners will compute the... (View More) volume of MMS' tetrahedral flight configuration and investigate how the tetrahedral volume changes as the satellites change positions. Finally, they will create a report that outlines their findings. This activity requires student access to internet accessible computers. This is lesson three in the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. **Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page).** (View Less)

In this activity, learners draw a circle with a single focus, an ellipse with two foci close together, and an ellipse with two foci far apart, and compare the shapes. Learners then measure the Sun in four images each taken in a different season,... (View More) comparing the apparent size of the Sun in each image to determine when Earth is closest to the Sun. This is the second activity in the SDO Secondary Learning Unit. The activity is reprinted with permission from the Great Explorations in Math and Science (GEMS). (View Less)

Math skills are applied throughout this investigation of windows. Starting with basic window shapes, students determine area and complete a cost analysis, then do the same for windows of unconventional shapes. Students will examine photographs taken... (View More) by astronauts through windows on the Space Shuttle and International Space Station to explore the inverse relationship between lens size and area covered. This lesson is part of the Expedition Earth and Beyond Education Program. (View Less)

This is an activity about measurement. Learners will label key points and features on a rectangular equal-area map and measure the distance between pairs of points in order to calculate the actual physical distance on the Sun that the point pairs... (View More) represent. This is Activity 5 of the Space Weather Forecast curriculum. (View Less)

Learners will demonstrate the size (volume) differences between Earth, Earth's Moon, and Mars. An extension is provided to estimate the distance between the Earth and the Moon, and the Earth and Mars, using the scale of the play dough planets'... (View More) sizes. Advance preparation of the play dough (recipe provided) is required. This is lesson 3 of 16 in the MarsBots learning module. It was adapted from 3-D Model of the Earth and Moon, an activity in The Universe at Your Fingertips. **Note:** updated links to two resources required for this lesson are provided in the Related & Supplemental Resources (shown to the right) - Planet Comparison Website and the Survey of Mars slide show. (View Less)

Learners will design and conduct experiments to answer the question, "how does distance and inclination affect the amount of heat received from a heat source?" They will measure heat change as a function of distance or viewing angle. From that... (View More) experiment, they will identify how the MESSENGER mission to Mercury takes advantage of these passive cooling methods to keep the spacecraft comfortable in a high-temperature environment. This is lesson 3 from MESSENGER Education Module: Staying Cool. Note: the student guide starts on p. 24 of the PDF. (View Less)

This is an activity about satellite size. Learners will calculate the volume of the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite, the first satellite mission to image the Earth's magnetosphere. They will then determine the... (View More) effect of doubling and tripling the satellite dimensions on the satellite's mass and cost. This is the first activity in the Solar Storms and You: Exploring Satellite Design educator guide. (View Less)

This is an activity about scale model building. Learners will use mathematics to determine the scale model size, construct a pattern, and build a one-fourth size scale model of the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration)... (View More) satellite, the first satellite mission to image the Earth's magnetosphere. This is the third activity in the Solar Storms and You: Exploring Satellite Design educator guide. (View Less)

This is a lesson about mapping objects using triangulation. Learners hunt distant meteorites using geometric properties and relationships, demonstrate and experience triangulation, and apply triangulation to directed and group-challenge mapping... (View More) activities. Activities, vocabulary words, and experimental extensions are included. This is lesson 2 of 19 in Exploring Meteorite Mysteries. (View Less)