You are here
Home ›Narrow Search
Now showing results 1-10 of 20
Developed as a planetarium show, this video describes the unique environment of our solar system planets and a few satellites, along with some of the challenges and possible solutions for potential human habitation on each. Two versions of the video... (View More) are available through links on the site - a kids version (18 minutes, suitable for grades 2-5) and a more advanced version (22 minutes, designed for middle/high school). Both are applicable to school and/or general audiences. Information on purchasing the DVD's in both English and Spanish for large audience presentations is included. (View Less)
Learners will use direct vocabulary instruction to learn the new definitions of planet, dwarf planet, and asteroid. The publicity generated by the International Astronomical Union's definition of Pluto as a dwarf planet in 2006 created a teachable... (View More) moment for schools around the world to consider the definitions of these concepts and how discoveries necessitate a change in the language we use to talk about it. (View Less)
This is a activity about applying the scientific method to a design challenge. Learners will design and build a platform that will be placed on a heat source. The platform is expected to serve as an insulator for a cube of gelatin. The goal is to... (View More) keep the inside temperature of the gelatin cube as cool as possible. Materials cost will vary, depending on materials chosen by group (within budget set by the teacher). Ties are made to the Mercury MESSENGER mission. Note: the student guide starts on p. 17 of the PDF. (View Less)
Learners will design and conduct experiments to answer the question, "how does distance and inclination affect the amount of heat received from a heat source?" They will measure heat change as a function of distance or viewing angle. From that... (View More) experiment, they will identify how the MESSENGER mission to Mercury takes advantage of these passive cooling methods to keep the spacecraft comfortable in a high-temperature environment. This is lesson 3 from MESSENGER Education Module: Staying Cool. Note: the student guide starts on p. 24 of the PDF. (View Less)
This is a lesson about radiation and the use of the scientific method to solve problems of too much radiation. Learners will build snow goggles similar to those used by the Inuit (designed to block unwanted light, while increasing the viewer's... (View More) ability to see in a bright region) to understand some of the engineering challenges encountered while protecting the solar cells on the Mercury MESSENGER. This is Lesson 2 of 4 at the middle level in the module, Staying Cool. (View Less)
This is a lesson about infrared radiation. Learners will investigate invisible forms of light as they conduct William Herschel's experiment and subsequent discovery of infrared radiation. They will construct a device to measure the presence of... (View More) infrared radiation in sunlight, explain that visible light is only part of the electromagnetic spectrum of radiation emitted by the Sun, follow the path taken by Herschel through scientific discovery, explain why we would want to use infrared radiation to study Mercury and other planets, and explain how excess infrared radiation is a concern for the MESSENGER mission. This is activity 1 of 4 at the Grade 5-8 band of "Staying Cool." (View Less)
This activity is about the discovery of water ice on Mars. Learners will record and graph temperature data and use a model of an ice-rich and ice-free surface on Mars to examine how ice content in the martian soil would impact the temperature of a... (View More) Mars microbe after impact. A student information sheet introducing the subject of ice and the search for water on Mars is provided. The activity requires access to a freezer the night before the activity. Note: Find the latest information and updates on Mars missions at the NASA Mars Exploration website (see Related & Supplemental Resources to the right). (View Less)
This is a lesson about observing and examining meteorites in a Meteorite Sample Disc. Learners will practice scientific techniques, develop skills in acquiring data through the senses, observe, examine, record, and sketch data, use magnifying... (View More) glasses, microscopes, and balances, and experience conceptual application. This is lesson 9 of 19 in Exploring Meteorite Mysteries. (View Less)
This is a lesson about planet formation. Learners will observe and describe differentiated samples in the Meteorite Sample Disk (or photographs), conduct experiments to model the separation of light and heavy materials within a planetary body,... (View More) relate meteorites to the core, mantle and crust of asteroids, and model the break-up of differentiated planetary bodies to expose the interior layers. Materials lists, and advanced preparation and procedural tips are included. This is lesson 11 of 19 in Exploring Meteorite Mysteries. (View Less)
Materials Cost: $5 - $10 per group of students
This is a lesson about the connection between meteorites and asteroids, focusing on remote-sensing techniques using light. Learners will make and record observations and measurements; analyze data and draw analogies; compare samples; measure and... (View More) record the brightness of spectral light; discover the composition of white light; participate in introductory quantitative spectroscopy experiments; set up, conduct and analyze a reflected light experiment; and recognize/discover that different materials reflect different proportions of incident light. Activities, vocabulary words, and experimental extensions are included. This is lesson 5 of 19 in Exploring Meteorite Mysteries. (View Less)
Materials Cost: $1 - $5 per group of students