You are here
Home ›Narrow Search
Now showing results 1-10 of 23
Using common items - a glass soft drink bottle, a straw, clay and food coloring - students assemble and calibrate a thermometer and then use it to measure outdoor temperatures. Students record and graph the temperature data and, additionally,... (View More) complete scale conversion problems, a written assignment and an oral presentation. The Students' Cloud Observations On-Line (S'COOL) project engages students in making and reporting ground truth observations of clouds then comparing those observations with data from the CERES satellite instrument. (View Less)
In this activity, participants learn about the atmosphere by making observations and taking measurements. They will go outside and use scientific equipment to collect atmospheric moisture data (temperature, relative humidity, precipitation and cloud... (View More) cover). Students will use this qualitative and quantitative data to understand how water is found in the atmosphere, how the atmosphere determines weather and climate, and how Earth’s spheres are connected through the water cycle. The data collection is based on protocols from the GLOBE program. This activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
Materials Cost: $1 - $5 per group of students
In this activity, students face an engineering challenge based on real-world applications. They are tasked with developing a tool they can use to measure the amount of rain that falls each day. Students will find out why freshwater is important,... (View More) learn about the water cycle, and the need to have a standard form of calibration for measurement tools. They will learn that keeping track of precipitation is important, and learn a little bit about how NASA's GPM satellite measures precipitation from space. This lesson uses the 5-E instructional model. (View Less)
This lesson was developed to give participants an understanding of Earth's water cycle. In this one-hour long activity, students participate in a webquest to learn about the water cycle, and then build a mini-model of the water cycle to observe how... (View More) water moves through Earth's four systems. The activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
Materials Cost: 1 cent - $1 per group of students
In this problem-based learning activity, students assume roles as members of the Department of Energy Efficiency and Renewable Energy (EERE). Your major area of concern is locating areas best for collecting solar power. You will need to evaluate... (View More) locations in the Northern Hemisphere and Southern Hemisphere, and decide which is the best location for solar energy development. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
In this data analysis activity, students connect the idea of the tilt and orbit of the earth (changing of seasons) with monthly snow/ice data. The lesson includes step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS),... (View More) guiding students through selection of a data set from a location of their choice, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
This is a problem-based learning activity in which students assume the roles of musicians planning a world tour. Students analyze precipitation data from tour cities to predict the best time of year to perform in these areas. Step-by-step... (View More) instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
Assuming the role of a meteorologist, students will proclaim one month as "Thunderstorm season" for their chosen study area. This decision will be based on analysis of deep convective cloud data downloaded from the Live Access Server. This lesson... (View More) uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, and an online glossary. (View Less)
By matching maps of snow and ice amounts with maps of net radiation flux for the same time frame, students will use the Live Access Server to explore how the net radiation flux has affected the snow and ice amounts in the Northern Hemisphere, as... (View More) well as how the presence of snow can affect the net radiation flux due to surface reflection. The lesson includes detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. This lesson is from the MY NASA DATA project, which has created microsets from large scientific data sets, and wrapped them with tools, lesson plans, and supporting documentation so that a teacher, or anyone in the interested public, can use authentic NASA Earth system science data. (View Less)
Cloud cover is a fundamental observation in the S'COOL project. The ability to reasonably estimate the percentage of cloud cover is introduced and practiced in this activity. The Students' Cloud Observations On-Line (S'COOL) project engages students... (View More) in making and reporting ground truth observations of clouds then comparing those observations with data from the CERES satellite instrument. (View Less)