You are here
Home ›Narrow Search
Now showing results 1-10 of 32
This multi-phased learning package progresses from guided engineering to an open mission-design challenge. Each step is scaffolded and includes easy-to-implement teaching tools, lessons and art activities. Learners, working in collaborative teams,... (View More) build an O-Rex spacecraft model. The building process incorporates inventing, designing and engineering- leading to a deeper understanding of NASA mission work. A leader guide, instructions, templates and a YouTube video are included and accessed through the Related & Supplemental Resources. (View Less)
This lesson plan teaches how to select the landing site for a planetary surface investigation, using the 5E learning cycle. Students will be able to determine a landing site for their Mars rover; work with their team to summarize information and... (View More) identify important details in non-fiction writing; research Gale Crater through an online interactive module; use Google Earth Mars to learn about Mars surface features; gather and analyze data to conduct a scientific experiment; collect and record data in a science notebook to draw logical and scientific conclusions; define and identify the role of controls and variables in teams' scientific or technical questions; and differentiate between weather and climate. The lesson plan has a number of appendices, including standards alignment. This is Lesson 8 of the elementary school version of the 6 week Mars Rover Celebration curriculum. (View Less)
This is a collection of mathematics problems relating to the moons of the solar system. Learners will use simple proportional relationships and work with fractions to study the relative sizes of the larger moons in our solar system, and explore how... (View More) temperatures change from place to place using the Celsius and Kelvin scales. (View Less)
This collection of 160 math problems covers the 20 science topic themes presented by the NASA/JPL Year of the Solar System (YOSS) website, covering the solar system, planets, the search for life, and robotics. Examples of topics included are: scale... (View More) of the solar system; asteroids; comets; moons and rings; volcanism in the solar system; ice in the solar system; water in the solar system; the Sun, transits and eclipses; astrobiology; magnetosphers and more. It is intended as a mathematics supplement for the science content presented at the YOSS website, and features grade-appropriate and Common Core State Standards-based math problems based on science content for grades 3-12. (View Less)
This is a lesson about measurement and cratering. Learners will read about the origin of the foot as a standardized unit of measure, work collaboratively to conduct an experiment about cratering, and collect and record data to draw logical and... (View More) scientific conclusions. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 7 of the Mars Rover Celebration Unit, a six-week curriculum. (View Less)
This is a lesson about the size and scale of planets in the solar system. Learners will kinesthetically model the order of the planets outward from the sun. Then they will use a string and beads to create a model to represent the relative distances... (View More) between the planets. Finally they will explore another model (using a beach ball for the sun) to discuss relative size of the planets to the sun. The lesson uses the 5E instructional model and includes teacher training, pacing guides, essential questions, a black-line master science notebook, a student presentation booklet, supplemental materials, and vocabulary for both students and teachers. This is lesson 1 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
Learners will construct two different types of trusses to develop an understanding of engineering design for truss structures and the role of shapes in the strength of structures. For optimum completion - this activity should span 3 class periods to... (View More) allow the glue on the structures to dry. This is engineering activity 1 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)
Learners will investigate the relationship between mass, speed, velocity, and kinetic energy in order to select the best material to be used on a space suit. They will apply an engineering design test procedure to determine impact strength of... (View More) various materials. This is engineering activity 2 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)
This is an activity about using solar arrays to provide power to the space station. Learners will solve a scenario-based problem by calculating surface areas and determining the amount of power or electricity the solar arrays can create. This is... (View More) mathematics activity 1 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)
Learners will investigate the relationship between speed, distance, and orbits as they investigate how quickly the International Space Station (ISS) can travel to take a picture of an erupting volcano. This is mathematics activity 2 of 2 found in... (View More) the ISS L.A.B.S. Educator Resource Guide. (View Less)