You are here
Home ›Now showing results 1-10 of 69
Students simulate the process of remote sensing by using common materials to represent Earth’s different ground coverings and a light meter to represent satellite instruments. The concept of albedo and its importance in Earth’s radiation budget... (View More) are introduced. The lesson uses the 5E instructional model and is part of the book, "Tour of the Electromagnetic Spectrum." (View Less)
Materials Cost: $1 - $5 per group of students
This unit consists of five activities, all of which focus on the response of plant life-cycle events to climate change. Students participate in discussions, field observations, data collection and analyses, plant identification, seed dispersal... (View More) comparisons, and graphing and analyses of plant phenology (timing of life-cycle events). Project BudBurst, a citizen science project which studies the impact of climate change on phenology, is integrated into this unit. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This unit consists of four activities. Students begin by examining temperature cycles (current, recent and historical) then add in factors such as carbon dioxide, precipitation and cloud cover to discover regional and global differences in the... (View More) effects of climate change. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This unit focuses on the impacts of climate change on humans. Students participate in activities using "Character Cards" (included with the unit). The cards introduce fictitious citizens who describe the local economic, social and political factors... (View More) that impact their country's climate change issues/responses. A second activity in the unit has students research, discuss and present their findings on the impacts of climate change - first at the global level then narrowed to a country, region and/or state level. In addition, students examine how their own energy and food choices impact climate change and then propose ideas to reduce their carbon footprint. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This curriculum uses an inquiry-based Earth system science approach, and leverages Project BudBurst, a citizen science phenology project, to engage students in authentic research on plant and ecosystem responses to climate change. Students collect... (View More) local data then analyze that data in the context of NASA regional and global data sets and satellite imagery to understand their data in personal, regional, and global contexts. The curriculum is divided into four units: The Earth as a System; Identifying the key changing conditions of the Earth system; Earth system responses to natural and human induced changes; and Predicting the consequences of changes for human civilization. Each unit consists of several activities with accompanying teacher answer sheets. (View Less)
Materials Cost: $1 - $5 per group of students
This unit consists of two parts, each with several activities which require students to participate in investigations, discussions, computer data analysis, role-playing, and research. In Part 1, students examine the roles of Earth's energy balance... (View More) and the greenhouse effect in creating and affecting climate. Part 2 focuses on the biosphere as a system. Students examine the interactions of organisms, the effects of climate change on food webs, and the importance to humans of a healthy, intact ecosystem. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This is an online lesson associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. Outside of Solar Week, information, activities, and... (View More) resources are archived and available online at any time. This is an activity about measurements of solar activity. Learners will observe an image of the Sun and sketch major features, plot data to begin to recognize patterns of solar activity, look for long-term patterns in graphed data, compare X-ray and visible light images of the Sun to find solar features common to both sets of images, and make a prediction of what the Sun will look like in a visible light image after observing an X-ray image taken on the same day. This activity is scheduled to occur during Monday of Solar Week. (View Less)
This is an online lesson associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. This activity is scheduled to occur during Monday of... (View More) Solar Week. The lesson introduces the concept of astronomical filters and their connections to imaging different objects in space. Learners will explore perceptions of images as seen using different colors of light, construct a filter wheel, and practice investigating various astronomical images using the filter wheel. This material was designed to highlight how filters are useful to astronomers and show how a real astronomical telescope uses filters to image the Sun. Outside of Solar Week, information, activities, and resources are archived and available online at any time. (View Less)
This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)
In this hands-on activity, learners will build a solar water heater by lining a box with reflective material, adding a translucent cover, and adding water-filled cans that are painted black. The temperature of the water is taken and recorded every... (View More) fifteen minutes. A sunny outdoor location for an extended period of time is required to do this activity. (View Less)