You are here
Home ›Now showing results 1-10 of 111
This unit consists of five activities, all of which focus on the response of plant life-cycle events to climate change. Students participate in discussions, field observations, data collection and analyses, plant identification, seed dispersal... (View More) comparisons, and graphing and analyses of plant phenology (timing of life-cycle events). Project BudBurst, a citizen science project which studies the impact of climate change on phenology, is integrated into this unit. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This unit consists of four activities. Students begin by examining temperature cycles (current, recent and historical) then add in factors such as carbon dioxide, precipitation and cloud cover to discover regional and global differences in the... (View More) effects of climate change. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This curriculum uses an inquiry-based Earth system science approach, and leverages Project BudBurst, a citizen science phenology project, to engage students in authentic research on plant and ecosystem responses to climate change. Students collect... (View More) local data then analyze that data in the context of NASA regional and global data sets and satellite imagery to understand their data in personal, regional, and global contexts. The curriculum is divided into four units: The Earth as a System; Identifying the key changing conditions of the Earth system; Earth system responses to natural and human induced changes; and Predicting the consequences of changes for human civilization. Each unit consists of several activities with accompanying teacher answer sheets. (View Less)
Materials Cost: $1 - $5 per group of students
This curriculum uses an inquiry-based Earth system science approach, and leverages Project BudBurst, a citizen science phenology project, to engage students in authentic research on plant and ecosystem responses to climate change. Students collect... (View More) local data then analyze that data in the context of NASA regional and global data sets and satellite imagery to understand their data in personal, regional, and global contexts. The curriculum is divided into four units: The Earth as a System; Identifying the key changing conditions of the Earth system; Earth system responses to natural and human induced changes; and Predicting the consequences of changes for human civilization. Each unit consists of several activities with accompanying teacher answer sheets. (View Less)
This unit focuses on local plant species; students learn to identify common species and will examine their life cycle characteristics as evidence of climate change. Through the use of the national citizen science project titled Project BudBurst,... (View More) students explore the impacts of climate variation on plant species distribution. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Students are introduced to the carbon cycle through discussion, modeling and a game. Students then complete activities and investigations on Greenhouse gasses, photosynthesis, cellular respiration and ecosystem services (functions and values of... (View More) intact ecosystems to humans). The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
This unit consists of two parts, each with several activities which require students to participate in investigations, discussions, computer data analysis, role-playing, and research. In Part 1, students examine the roles of Earth's energy balance... (View More) and the greenhouse effect in creating and affecting climate. Part 2 focuses on the biosphere as a system. Students examine the interactions of organisms, the effects of climate change on food webs, and the importance to humans of a healthy, intact ecosystem. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This activity demonstrates optical properties of water: that different constituents in water affect the transmission, absorption, and scattering of different colors in the visible light spectrum. Inexpensive, off-the-shelf components are used to... (View More) build a light sensor and source, creating a simple spectrophotometer that can measure light absorption. In the second part of this activity, principles of ocean color remote sensing are applied to measure reflectance. Using components that are clearly visible allows students to configure them in different ways. Playing with the instrument design gives students a practical understanding of spectrophotometers, in-water optics, and remote sensing. As an extension of this concept, students are encouraged to think about how ocean color is used to estimate the concentration of chlorophyll to infer phytoplankton abundance, colored dissolved organic matter, and suspended sediments. (View Less)
Using the 5E instructional model, students discover the value of using color maps to visualize data. The activity requires students to create a color map of the ozone hole from Dobson data values derived from the Aura satellite. Students then... (View More) interpret that map and compare and evaluate different color scales. Note that this is the Spanish version of Exploring Color Maps: Using Stratospheric Ozone Data. (View Less)
Through the use of the 5E instructional model, students discover the value of using color maps to visualize data. The activity requires students to create a color map of the ozone hole from Dobson data values derived from the Aura satellite.... (View More) Students then interpret that map and compare and evaluate different color scales. (View Less)