## You are here

Home ›Now showing results **21-30** of **85**

In this problem set, learners will analyze a table of electrical consumption of appliances when not in use and consider the total consumption in kilowatt-hours (kWh), associated cost and their own consumption when appliances are in "instant-on" or... (View More) "stand-by" mode. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change. (View Less)

This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the... (View More) magnetic field of the Earth. This is the second activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. (View Less)

This is an activity about solar rotation and sunspot motion. Learners will use a sphere or ball to model the Sun and compare the observed lateral motion of sunspots to their line-of-sight motion. This is Activity 1 of the Space Weather Forecast... (View More) curriculum. (View Less)

This is an activity about Earth's magnetosphere. Learners will use a magnet, simulating Earth's protective magnetosphere, and observe what occurs when iron filings, simulating the solar wind, blow past and encounter the magnet's field. This is the... (View More) sixth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. (View Less)

This is an activity about depicting magnetic polarity. Learners will observe several provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines and depict... (View More) the polarities for several orientations, including an arrangement of six magnetic poles. This is the fourth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. (View Less)

In this problem set, learners will calculate energy consumption in kilowatt-hours (kWh) and its associated cost in two scenarios. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change.

Sea floor spreading is demonstrated using a model consisting of two classroom desks and an 8-foot strip of paper. Changes in polarity are indicated using a felt marker. The investigation supports material presented in chapter 3, "What Heats the... (View More) Earth's Interior?" in the textbook Energy flow, part of the Global System Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)

This activity demonstrates Newton’s Second Law (F=ma), and helps show the relationship between potential and kinetic energy. Students sit on a skateboard in a sling shot configuration, and are accelerated down the hall. Potential energy from the... (View More) inner tubes (sling shot) is converted into kinetic energy. Materials required for the demonstration include 10 bicycle inner tubes, a helmet, skateboard, stopwatch, and a spring scale. Formulas and a worksheet are provided. The investigation supports material presented in chapter 1, "What is energy?" in the textbook Energy flow, part of Global System Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)

This activity, effective outdoors or indoors, demonstrates how insolation is affected by latitude by using a pair of thermometers, each taped to some cardboard, placed outside on a sunny day. A globe can also be used, outdoors or indoors. Students... (View More) learn that seasonal variations in temperature are the result of the heating of the Sun as a function of its peak angle and length of the day. A template for a folded paper structure to explore the effects of the angle of illumination on heating is included. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This activity is related to the discovery of water ice on Mars. Learners are provided with a global map showing where the presumed water ice is located and use it as context for analyzing and interpreting images taken with the Thermal Emission... (View More) Imaging System (THEMIS) aboard the Mars Odyssey spacecraft. They will use the water ice maps to interpret the geology of the regions on Mars and evaluate the prospects for exploring these regions in the future. A teacher guide and a student guide are available. This is an extension of the "Mars Image Analysis Activity" and is activity 5 of 5 in Buried Water Ice on Mars. (View Less)