## You are here

Home ›Now showing results **1-7** of **7**

This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field... (View More) detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets. (View Less)

Materials Cost: Over $20 per group of students

This is an activity about image comparison. Learners will analyze and compare two sets of images of the Sun taken by instruments on the Solar Dynamics Observatory spacecraft. With Set 1, they will observe the Sun in both a highly active and a... (View More) minimally active state, and be able to detect active regions and loops on the Sun by comparing the two images. With Set 2, they will identify areas of high magnetic activity on a magnetogram image and recognize that these areas correspond to highly active regions on the Sun. (View Less)

This is an activity about forecasting space weather. Learners will use real-time data from NASA's Solar Dynamics Observatory, or SDO, to identify a variety of solar features and active regions of the Sun, and then will use these observations to... (View More) predict the probability of a space weather event. This activity will require each student or group of students to have a computer with internet access. (View Less)

This is an activity about solar rotation and sunspot motion. Learners will use a sphere or ball to model the Sun and compare the observed lateral motion of sunspots to their line-of-sight motion. This is Activity 1 of the Space Weather Forecast... (View More) curriculum. (View Less)

This online activity introduces the importance of meteorites to the understanding of the origin of the Solar System. Learners will use a key to determine if samples are meteorites. Finding meteorites can be difficult because most meteorites look... (View More) like Earth rocks to the casual or untrained eye. (View Less)

In this activity, students use base-two slide rules, log tapes, and calculators to practice raising exponents in base notation and pulling down exponents in log notation. Students will develop an understanding that antilog notation expresses the... (View More) exact same idea as raising a base to a power. This activity is activity C2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students develop a simplified log table using information from their Log Tapes. Then they use it to solve arithmetic problems by looking up and combining logs, and finding the antilog. Because these problems are extremely simple,... (View More) students appreciate the logic of logarithms without getting bogged down in the arithmetic detail and error. This is activity B3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)