## You are here

Home ›Now showing results **1-10** of **11**

Nondestructive Evaluation (NDE) is the process of evaluating materials to detect and measure the presence of defects without causing damage to the material being tested. In this lesson, middle and high school students are introduced to NDE,... (View More) refraction of light, and birefringence (the process in which light moving in different directions, or polarizations, travels at different speeds within a material). Students test a variety of transparent plastics using polarizing filters and analyze the extent and degree of stress the materials have undergone by examining the birefringence produced. Guide Lites are individual activities from NASA eClips™ Educator Guides that are developed for informal settings. Each Guide Lite follows the 5E model and includes lesson objectives, a materials list, and links to the supporting NASA eClips™ video segments. (View Less)

Materials Cost: $10 - $20 per group of students

Intended for use prior to viewing the Science on a Sphere film "Water Falls," this lesson introduces students to Earth's water cycle and the importance of freshwater resources.

Learners create art inspired by authentic NASA planetary image data while learning to recognize the geology on planetary surfaces, uniquely inspiring learner engagement. This presentation and accompanying activity use the elements of art - shape,... (View More) line, color, texture, value - to make sense of features in NASA images, honing observation skills and inspiring questions. It aligns with the NGSS cross-cutting concept of Patterns. Videos, images, and an interactive poster that breaks down activity elements deepen user access. (View Less)

This is an activity about albedo, which is a measurement of the reflectance of a planetary surface. Learners will classify areas on an image in terms of albedo values and then sketch their own portion of an image from space. These sketches are... (View More) assembled to view the larger image that the class or group has created.** Note: See Related & Supplemental Resources (right side of this page) for a link to download the student pages of this activity.** (View Less)

Learners will compare and contrast images of Earth and Mars and then experiment with lenses to understand more about the instruments used to make the pictures. This is activity 1 of 9 in Mars and Earth: Science Learning Activities for After School.

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students construct adding slide rules, scaled with linear calibrations like ordinary rulers. Students learn to move these scales relative to each other in ways that add and subtract distances, thus calculating sums and differences.... (View More) This is Activity A1 in the "Far Out Math" educator's guide. Lessons within the guide include activities in which students measure, compare quantities as orders of magnitude, use scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students add and subtract log distances on their Log Tapes to discover that the corresponding numbers multiply and divide. This will lead them to an experiential understanding of the laws of logarithms. This is activity B2 in the... (View More) "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct Log Tapes calibrated in base-ten exponents, then use them to derive relationships between base-ten logs (exponents) and antilogs (ordinary numbers). This is activity B1 in the "Far Out Math" educator's guide.... (View More) Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)