## You are here

Home ›## Narrow Search

Now showing results **1-10** of **12**

These guides showcase education and public outreach resources from across more than 20 NASA astrophysics missions and programs. The twelve guides - one for each month - contain a science topic, an interpretive story, a sky object to view with... (View More) finding charts, hands-on activities, and connections to NASA science. The guides are modular, so that educators can use the portions that are the most useful for their audiences/events. Following is the theme for each month: January - Betelgeuse, February - Orion Nebula, March - Pleiades, April - Pollux; May - Hubble Deep Field, June - Hercules Cluster, July - Ring Nebula & Veil Nebula, August - The Search for Habitable Worlds, September - Milky Way Galaxy, October - Upsilon Andromedae, November - Andromeda Galaxy, and December - Crab Nebula. (View Less)

In this activity, students are reminded that the Universe is made up of elements and that the heavier elements are created inside of a star. They are then introduced to the life cycle of a star and how a star's mass affects its process of fusion and... (View More) eventual death. Students discuss the physical concept of equilibrium as a balancing of forces and observe an experiment to demonstrate what happens to a soda can when the interior and exterior forces are not in equilibrium. An analogy is made between this experiment and core collapse in stars, to show the importance of maintaining equilibrium in stars. Finally, students participate in an activity which demonstrates how mass is ejected from a collapsed star in a supernova explosion, thereby dispersing heavier elements throughout the Universe. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive or easily found. It is recommended that a leader with astronomy knowledge lead the activities, or at least be available to answer questions, whenever possible. (View Less)

Students are introduced to the periodic table and the concept of atomic elements. The group discusses how all material in the Universe is composed of elements and that the atom is the smallest particle that still has the physical and chemical... (View More) properties of any given element. As an exercise in statistics, the students participate in a counting experiment in which they sample a 'Universe bead mix' (where each bead color represents a different element present in the Universe) to estimate the overall composition of the Universe. They compare their findings of the Universe's overall composition with the composition of various different objects in the Universe that are represented by mixtures of rice, beans and other dried goods in jars. Finally, students are introduced to the idea that hydrogen fusion creates heavier elements inside a star. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive; however, some portions of the preparation can be time intensive. It is recommended that a leader with astronomy knowledge lead the activities, or at least be available to answer questions, whenever possible. (View Less)

Students are introduced to the scientific tool of spectroscopy. They each build a simple spectroscope to examine the light from different light sources, particularly the Sun (Warning: Do not look directly at the Sun) and artificial lights (e.g.,... (View More) fluorescent or sodium lamps). Students compare the continuous spectrum of incandescent lights and the solar spectrum with the clear spectral lines of the fluorescent or sodium room lights and discharge lamps. They learn how the spectral "fingerprints" of each particular element help astronomers recognize the presence of specific elements in distant astronomical objects. Students are also introduced to the broader electromagnetic spectrum beyond what is visible with our eyes and how scientists observe distant objects using multiple wavelength bands. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive. (View Less)

Students are introduced to the basic properties, behavior and detection of black holes through a brief discussion of common conceptions and misconceptions of these exciting objects. They "act out" a way black holes might be detected through their... (View More) interaction with other objects. In this activity, girls represent binary star systems in pairs, walking slowly around one another in a darkened room with each pair holding loops of wire to simulate the gravitational interaction. Most of the students are wearing glow-in-the-dark headbands to simulate stars, some are without headbands to represent black holes, and a small set of the black holes have flashlights to simulate X-ray emission. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive or easily found. It is recommended that a leader with astronomy knowledge lead the activities, or at least be available to answer questions, whenever possible. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students add and subtract log distances on their Log Tapes to discover that the corresponding numbers multiply and divide. This will lead them to an experiential understanding of the laws of logarithms. This is activity B2 in the... (View More) "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use their Log Tapes as a reference for ordered pairs, and graph positive numbers as a function of their base-10 logarithms. They extend each plotted point to the vertical axis, thereby generating a logarithmic scale that... (View More) cuts and folds into an improvised slide rule. This is activity E1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct Log Rulers, finely calibrated in base-10 exponents and numbers (logs and antilogs). They practice reading these scales as accurately as possible, listing all certain figures plus one uncertain figure. This is... (View More) activity D1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)