You are here
Home ›Now showing results 1-10 of 14
This is a lesson about the solar wind, Earth's magnetosphere, and the Moon. Participants will work in groups of two or three to build a model of the Sun-Earth-Moon system. They will use the model to demonstrate that the Earth is protected from... (View More) particles streaming out of the Sun, called the solar wind, by a magnetic shield called the magnetosphere, and that the Moon is periodically protected from these particles as it moves in its orbit around the Earth. Participants will also learn that the NASA ARTEMIS mission is a pair of satellites orbiting the Moon that measure the intensity of solar particles streaming from the Sun. (View Less)
Learners create art inspired by authentic NASA planetary image data while learning to recognize the geology on planetary surfaces, uniquely inspiring learner engagement. This presentation and accompanying activity use the elements of art - shape,... (View More) line, color, texture, value - to make sense of features in NASA images, honing observation skills and inspiring questions. It aligns with the NGSS cross-cutting concept of Patterns. Videos, images, and an interactive poster that breaks down activity elements deepen user access. (View Less)
Students will use NASA's Global Climate Change website to research five of the key indicators (vital signs) of Earth’s climate health. These indicators are: global surface temperature, carbon dioxide concentrations, sea level, Arctic sea ice, and... (View More) land ice. They will use this information, shared in their expert groups, to create an informative poster about their assigned key indicator. The poster will be used by other groups to learn about all five of the key indicators and how Earth scientists use these indicators to analyze changes in Earth’s climate. The lesson plan uses the 5E instructional sequence. (View Less)
After creating a model of multiple volcanic lava flows, students analyze the layers, sequence the flows, and interpret the stratigraphy. Students use that same volcanic layering model to investigate relative dating and geologic mapping principles-... (View More) which they will then apply to satellite imagery. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
Using a set of activities, recommendations, and diagrams, participants will construct a fully functional Space Weather Action Center (SWAC) for use in a classroom. Students will access, analyze, and record NASA satellite and observatory data to... (View More) monitor the progress of an entire solar storm. Afterward, they will transform the data collected in their student journals into real SWAC news reports using an adaptable SWAC script. (View Less)
Learners will investigate, discuss, and determine why humans have always explored the world (and now space) around them. Students determine these reasons for exploration through a class discussion. In the first activity, students use the Internet to... (View More) examine the characteristics of past explorers and why they conducted their exploration. They then examine why current explorers - including the students themselves - want to explore other worlds in the Solar System. By the end of the lesson, the students can conclude that no matter what or when we explore - past, present, or future - the reasons for exploration are the same; the motivation for exploration is universal. Note: The MESSENGER mission to Mercury that is mentioned in this lesson ended operations April 30, 2015. For the latest information about MESSENGER and NASA's solar system missions see the links under Related & Supplemental Resources (right side of this page). (View Less)
The goal of this lesson is for students to understand how to plan a mission to another world in the solar system. They begin by discussing the path of a spacecraft traveling between planets, examining the journey from the Earth to Mars as an... (View More) example. In Activity 1, students determine the pros and cons for different ways we can explore another world, either by observing from the Earth or by sending a spacecraft to fly by, orbit, or land on the world. In Activity 2, the students plan a complete mission to explore another world in the Solar System. By the end of the lesson, the students come to understand that what scientists want to learn about an object determines how they plan the mission, but real-life constraints such as cost and time determine what actually can be accomplished. Note: The MESSENGER mission to Mercury that is mentioned in this lesson ended operations April 30, 2015. For the latest information about MESSENGER and NASA's solar system missions see the links under Related & Supplemental Resources (right side of this page). (View Less)
Learners will read about missions to asteroids and comets, consider the measurements and math required for the robotic spacecraft to visit these objects, and are invited to finish the story themselves. The provided extension explains how to use a... (View More) K-W-L chart with the story and provides a glossary of terms. (View Less)
Materials Cost: 1 cent - $1 per group of students
This is an activity about how the Sun can affect the Earth's atmosphere, specifically the ionosphere. Learners will use real data from a Sudden Ionosphere Disturbance Monitor, or SID Monitor, to identify the signatures in the graphed data that can... (View More) be used to determine the times of sunrise and sunset. Although the SID monitors are designed to detect SIDs caused by solar flares, they also detect the normal influence of solar X-rays and UV light during the day as well as cosmic rays at nighttime. There is a distinct shape to a 24-hour SID data graph, with unique shapes, or signatures, of the graph appearing at sunrise and sunset.This activity is part of the Research with Space Weather Monitor Data educators guide. Use of and access to a Stanford Solar Center SID monitor and the internet is encouraged but not required. Locations without a SID monitor can use sample data provided in the educators guide. (View Less)
This is a lesson about the temperature on different planets in our solar system. Learners will explore the planetary temperature system. They explore how each aspect (e.g., mass, temperature and gravity) influences the system and the consequences of... (View More) disrupting that system. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson 8 in the Astro-Venture Astronomy Unit. The lessons are designed for educators to use in conjunction with the Astro-Venture multimedia modules. (View Less)