Narrow Search

Filters: Your search found 17 results.
Educational Level:
Middle school  
Resource Type:
Student guide  
Instructional Strategies:
Hands-on learning  
Topics/Subjects:
Solar system  
Sort by:
Per page:

Now showing results 1-10 of 17

This is the first module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Activities are self-directed by students or student teams using online videos and data from the SDO satellite to explore, research and build knowledge about... (View More)

Keywords: Sunspots
Audience: Middle school, Informal education
Materials Cost: $1 - $5

This is the second module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and uses online videos, data from the SDO satellite and hands-on activities to explore, research... (View More)

This is the third module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and utilizes online videos, data from the SDO satellite and hands-on activities to explore,... (View More)

This is the fourth and culminating module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Student teams use information and resources from the other three modules in the project suite to create a 3D interactive solar exhibit to... (View More)

In this activity, students create a scale model depicting the vertical distance from Earth’s surface to various features and objects, including Earth’s atmospheric layers, the Van Allen Radiation Belts, and geocentric satellites. Students also... (View More)

Learners will take and then compare the images taken by a camera - to learn about focal length (and its effects on field of view), resolution, and ultimately how cameras take close-up pictures of far away objects. Finally, they will apply this... (View More)

This is a lesson about using the light from the star during an occultation event to identify the atmosphere of a planet. Learners will add and subtract light curves (presented as a series of geometrical shapes) to understand how this could occur.... (View More)

In this lesson, students observe the surface of rotating potatoes to help them understand how astronomers can sometimes determine the shape of asteroids from variations in reflective brightness.

Learners will design and conduct experiments to answer the question, "how does distance and inclination affect the amount of heat received from a heat source?" They will measure heat change as a function of distance or viewing angle. From that... (View More)

This is a lesson about radiation and the use of the scientific method to solve problems of too much radiation. Learners will build snow goggles similar to those used by the Inuit (designed to block unwanted light, while increasing the viewer's... (View More)

«Previous Page12 Next Page»