You are here
Home ›Narrow Search
Now showing results 1-7 of 7
Using the MY NASA DATA Live Access Server (LAS), students gather data on both solar radiation and surface temperature for two same-latitude locations. Students then create online graphs of that data to allow for analysis and comparison. This lesson... (View More) uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It includes detailed procedures, analysis questions, teacher notes, related links, background information, lesson extensions, and a list of related AP Environmental Science topics. (View Less)
Through an analysis of data sets on four parameters - sea ice totals, sea surface temperatures, near surface temperatures and surface type - students must decide whether the Arctic is experiencing climate change and predict any potential effects on... (View More) the rest of the planet. The activity in this lesson involves card sorting, a technique in which index cards, each containing content or diagrams, are grouped according to unifying concepts. The cards in this lesson contain graphs that students have downloaded, summaries they have written, and questions they have derived from the lesson. The graphs used in this activity show satellite data sets for a location above the Arctic Circle. Students will analyze and group the cards and will then write a conclusion in which they explain the connection between the four parameters, and relate them back to climate change. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary, and a list of related AP Environmental Science topics. (View Less)
Correlations between sea surface temperatures and the frequency and intensity of hurricanes are investigated in this lesson. The activity focuses on six named hurricanes that occurred between 1999 and 2009. Satellite data on those hurricanes, along... (View More) with corresponding sea surface temperature data, will be downloaded and plotted. Students will analyze that data for evidential links, hypothesize about the possible effect on hurricanes of continual ocean temperature increases, and predict related implications for residents of coastal areas. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, and an online glossary. (View Less)
How effective would solar cells be in any particular area of the United States? In this activity, students answer that question by analyzing graphs of incoming solar radiation. Students will download two solar radiation graphs, one based on latitude... (View More) and one based on cloud cover. After transferring that data to the accompanying worksheet, students will determine the areas in the United States best suited for the use of solar cells. Using both an overlay graph and a difference graph, students will determine the practicality of solar cell power for a home in various U.S. locations. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary, and a list of related AP Environmental Science topics. (View Less)
In this data analysis activity, students investigate the relationship between between surface temperature, tropospheric ozone, and air quality. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through... (View More) selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
This interactive, online module reviews the basics of the the electromagnetic spectrum and makes the connection between radiation theory and the images we get from weather satellites. Students will learn about: the electromagnetic spectrum;... (View More) electromagnetic waves; the electromagnetic spectrum and radiation theory; and how satellite radiometers "see" different sections of the spectrum. The module is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections. (View Less)
In this interactive, online module, students learn about satellite orbits (geostationary and polar), remote-sensing satellite instruments (radiometers and sounders), satellite images, and the math and physics behind satellite technology. The module... (View More) is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections. (View Less)