You are here
Home ›Narrow Search
Now showing results 1-10 of 14
A Hovmuller plot is a diagram that visibly displays data patterns from a selected latitude or longitude over a time period. Through a storyline and several samples, students are introduced to a Hovmuller plot of temperature data along a longitude in... (View More) the eastern United States. Students then create salinity and precipitation plots using data from the MY NASA DATA Live Access Server. (View Less)
This unit consists of four activities. Students begin by examining temperature cycles (current, recent and historical) then add in factors such as carbon dioxide, precipitation and cloud cover to discover regional and global differences in the... (View More) effects of climate change. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This activity uses rain and flood events in the Midwest to engage students in an exploration of the collection, comparison, analysis and utilization of rainfall data. Students will access online precipitation data from both a ground-based station... (View More) (the Community Collaborative Rain Hail and Snow Network (CoCoRaHS) network) and a satellite (the Tropical Rainfall Measuring Mission (TRMM)). Explicit instructions are provided to allow students to graph, map and analyze that data. Instructions are also provided for setting up a school-based rain gauge to gather local rainfall data for analysis. (View Less)
This is an activity about how the Sun can affect the Earth's atmosphere, specifically the ionosphere. Learners will use real data from a Sudden Ionosphere Disturbance Monitor, or SID Monitor, to identify the signatures in the graphed data that can... (View More) be used to determine the times of sunrise and sunset. Although the SID monitors are designed to detect SIDs caused by solar flares, they also detect the normal influence of solar X-rays and UV light during the day as well as cosmic rays at nighttime. There is a distinct shape to a 24-hour SID data graph, with unique shapes, or signatures, of the graph appearing at sunrise and sunset.This activity is part of the Research with Space Weather Monitor Data educators guide. Use of and access to a Stanford Solar Center SID monitor and the internet is encouraged but not required. Locations without a SID monitor can use sample data provided in the educators guide. (View Less)
This is an activity about identifying solar flares. Learners will cross-reference data collected from a Sudden Ionosphere Disturbance, or SID, Monitor, the GOES solar catalog, and SOHO spacecraft images of the Sun to identify solar flares coming... (View More) from the Sun that are affecting Earth's ionosphere. This activity is part of the Research with Space Weather Monitor Data educators guide. Use of and access to a Stanford Solar Center SID monitor and the internet is encouraged but not required. Locations without a SID monitor can use SID data posted online: http://sid.stanford.edu/database-browser/. (View Less)
This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its... (View More) intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide. (View Less)
This is an activity about the periodic reversals of Earth's magnetic field. Learners will graph the frequency of magnetic pole reversals over the past 800,000 years and investigate answers to questions using the graphed data. This is Activity 8 in... (View More) the Exploring Magnetism on Earth teachers guide. (View Less)
This is an activity about the magnetic deflection. Learners will observe and measure the deflection that an iron mass causes in a soda bottle magnetometer and plot the data. The data should show the inverse-square cube law of change in the magnetic... (View More) field. This is the twelfth activity in the guide and requires prior use and construction of a soda bottle magnetometer, as well as a six to ten pound container of iron nails (or an equivalent iron mass). (View Less)
This is a lesson about the Kp index, a common numerical indicator of magnetic storminess. Learners will access and analyze Kp index plots of magnetic storm strength and determine the relative frequency of stronger versus weaker magnetic storms... (View More) during periods of higher and lower solar activity. This is the fifteenth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)
This is a lesson to introduce the Kp index, a common numerical indicator of magnetic storminess. Learners will access and analyze Kp index plots of magnetic storm strength and determine the relative frequency of stronger versus weaker magnetic... (View More) storms. This is the fourteenth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)