## You are here

Home ›Now showing results **1-10** of **18**

This is the first module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Activities are self-directed by students or student teams using online videos and data from the SDO satellite to explore, research and build knowledge about... (View More) features of the Sun. Students build vocabulary, apply or demonstrate learning through real world connections, and creating resources to use in their investigations. Each activity comes with both a teacher and student guide with sequential instructions and embedded links to the needed videos and internet resources. Activity 1A: Structure of the Earth's Star takes students through the features and function of the Sun's structures using online videos, completing a "Sun Primer" data sheet using information from the videos, and creating a 3D origami model of the Sun. Students use a KWL chart to track what they have learned. Activity 1B: Observing the Sun has students capture real solar images from SDO data to find and record sunspots and track their movement across the surface of the Sun. Activity 1C has students create a pin-hole camera to use in calculating the actual diameter of the Sun, and then calculate scales to create a Earth-Sun scale model. Students reflect on their learning and results at the end of the module. An internet connection and access to computers are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)

This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)

Students will learn about NASA's Radiation Belt Storm Probes (RBSP), Earth's van Allen Radiation Belts, and space weather through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will use simple linear functions... (View More) to examine the scale of the radiation belts and the strength of Earth's magnetic field. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the twin STEREO spacecraft and how they are being used to track solar storms through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will examine data to learn more about the frequency... (View More) and speed of solar storms traveling from the Sun to Earth. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the Transit of Venus through reading a NASA press release and viewing a NASA eClips™ video that describes several ways to observe transits. Then students will study angular measurement by learning about parallax and how... (View More) astronomers use this geometric effect to determine the distance to Venus during a Transit of Venus. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. Students will learn more about space weather through reading a NASA press release and viewing a NASA... (View More) eClips™ video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of different samples of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. These events create space weather. Students will learn more about space weather and how it affects... (View More) Earth through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of a sample of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

This is an online set of information about astronomical alignments of ancient structures and buildings. Learners will read background information about the alignments to the Sun in such structures as the Great Pyramid, Chichen Itza, and others.... (View More) Next, the site contains 10 short problem sets that involve a variety of math skills, including determining the scale of a photo, measuring and drawing angles, plotting data on a graph, and creating an equation to match a set of data. Each set of problems is contained on one page and all of the sets utilize real-world problems relating to astronomical alignments of ancient structures. Each problem set is flexible and can be used on its own, together with other sets, or together with related lessons and materials selected by the educator. This was originally included as a folder insert for the 2010 Sun-Earth Day. (View Less)

This is a book containing over 200 problems spanning over 70 specific topic areas covered in a typical Algebra II course. Learners can encounter a selection of application problems featuring astronomy, earth science and space exploration, often with... (View More) more than one example in a specific category. Learners will use mathematics to explore science topics related to a wide variety of NASA science and space exploration endeavors. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities. This book can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 37 space science mathematical problems, several of which use authentic science data. The problems involve math skills such as unit conversions, geometry, trigonometry, algebra, graph analysis, vectors, scientific... (View More) notation, and many others. Learners will use mathematics to explore science topics related to Earth's magnetic field, space weather, the Sun, and other related concepts. This booklet can be found on the Space Math@NASA website. (View Less)