You are here
Home ›Narrow Search
Now showing results 1-10 of 23
Explore simulated remote sensing techniques to observe a clay model of a planet. Observations are done from the perspective of a telescope at Earth’s surface, a telescope above Earth’s atmosphere, and from closer proximity to the planet in a... (View More) fly-by, an orbit and a landing. This activity illustrates the integration between science, engineering, technology and teamwork. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
This unit investigates asteroids, comets, and meteoroids, focusing on Vesta, a prominent asteroid in the asteroid belt. The unit of eleven lessons culminates in having students use engineering practices to design, build, and test devices that will... (View More) land on Vesta, collect and separate natural resources found there, and deliver a payload to a target. Teachers and students are also introduced to the Asteroid Mappers-Vesta Edition citizen science project that is part of the CosmoQuest online community. Lessons include background information for educators, reviews and assessments, and links to supplemental videos and websites. Next Generation Science Standards (NGSS) and Common Core Standards are listed. (View Less)
Learners will construct a mock-up of planetary surface rover. They begin by exploring the importance of engineering in our society and work as a team to build a prototype of the team's rover using student science notebooks and team sketches as a... (View More) guide. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 13 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
Learners will construct a mock-up of a planetary surface rover. They begin by exploring the importance of engineering in our society, and work as a team to build a prototype of the team's rover using student science notebooks and team sketches as a... (View More) guide. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 13 of the Mars Rover Celebration Unit, a six-week curriculum. (View Less)
In this activity, teams of learners will model how scientists and engineers design and build spacecraft to collect, store, and transmit data to Earth. Teams will design a system to store and transmit topographic data of the Moon and then analyze... (View More) that data and compare it to data collected by the Lunar Reconnaissance Orbiter. (View Less)
Learners will simulate the challenges in communications that engineers face when operating a Mars rover from Earth. They will participate as part of a rover team to design and execute a series of commands that will guide a rover (comprised of four... (View More) students walking closely together) through an obstacle course simulating the Martian surface. Students will learn the limitations of operating a planetary rover and problem solving solutions by using this simulation. The lesson is part of the Mars Education Program series; it models the engineering design process using the 5E instructional model and includes teacher notes, vocabulary, student journal and reading. Next Generation Science Standards are listed. (View Less)
The 9-session NASA Family Science Night program emables middle school children and their families to discover the wide variety of science, technology, engineering, and mathematics being performed at NASA and in everyday life. Family Science Night... (View More) programs explore various themes on the Sun, the Moon, the Stars, and the Universe through fun, hands-on activities, including at-home experiments. Instructions for obtaining the facilitator's guide are available on the Family Science Night site. (View Less)
In this lesson, learners will discover how certain snakes (pit-vipers) can find prey using a natural infrared sensor and will extend their understandings by exploring infrared technology applications. The lesson features background information for... (View More) the teacher, pre-requisite skills and knowledge for the student, a mini-exploration of infrared image technology, multiple image sets, assessment information, student worksheets, extension and transfer activities, and additional resources. This is lesson 2 on the Infrared Zoo website. (View Less)
Materials Cost: $1 - $5 per group of students
This resource complements a planetarium experience. However, the accompanying educator's guide and companion guides - with lessons on observing and investigating the Moon - are available to download for independent classroom use. The hands-on... (View More) activities, which take up where the show leaves off, motivate students to use their cooperative learning skills to design a self-sufficient lunar station. Working in teams, students develop critical thinking skills, problem-solving techniques, and an understanding of complex systems as they discuss solutions to the essential questions they are presented. (View Less)
This is a design challenge about heat transfer and insulation. Learners will apply the scientific method to design and build a container that will keep items cool when placed in boiling water. They will practice collaboration in team-building and in... (View More) teamwork. This is lesson 4 of 4 at the Grade 9-12 range of the module, Staying Cool. (View Less)