You are here
Home ›Narrow Search
Now showing results 1-10 of 15
The MISSIONMaker program uses art and the making experience to investigate NASA mission design, engineering and space exploration. Using common materials, students build a rover that incorporates six simple machines. The building instructions... (View More) include design challenges, background information and examples of how NASA spacecraft incorporate and use those same simple machines. The lesson includes step-by-step instructions, templates, explanatory YouTube videos, and additional related resources. (View Less)
This is the first module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Activities are self-directed by students or student teams using online videos and data from the SDO satellite to explore, research and build knowledge about... (View More) features of the Sun. Students build vocabulary, apply or demonstrate learning through real world connections, and creating resources to use in their investigations. Each activity comes with both a teacher and student guide with sequential instructions and embedded links to the needed videos and internet resources. Activity 1A: Structure of the Earth's Star takes students through the features and function of the Sun's structures using online videos, completing a "Sun Primer" data sheet using information from the videos, and creating a 3D origami model of the Sun. Students use a KWL chart to track what they have learned. Activity 1B: Observing the Sun has students capture real solar images from SDO data to find and record sunspots and track their movement across the surface of the Sun. Activity 1C has students create a pin-hole camera to use in calculating the actual diameter of the Sun, and then calculate scales to create a Earth-Sun scale model. Students reflect on their learning and results at the end of the module. An internet connection and access to computers are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
Each lesson or activity in this toolkit is related to NASA's Lunar Reconnaissance Orbiter (LRO). The toolkit is designed so that each lesson can be done independently, or combined and taught in a sequence. The Teacher Implementation Guide provides... (View More) recommendations for combining the lessons into three main strands: 1) Lunar Exploration - These lessons provide a basic introduction to Moon exploration. Note that this strand is also appropriate for use in social studies classes. 2) Mapping the Moon - These lessons provide a more in-depth understanding of Moon exploration through the use of scientific data and student inquiry. The lessons also include many connections to Earth science and geology. 3) Tools of Investigation - These higher-level lessons examine the role of technology, engineering and physics in collecting and analyzing data. (View Less)
Learners will rotate through three stations where they investigate probes and rovers to learn how they are built, learn about the propulsion, navigation, controls and daily handling of spacecraft, gather, and analyze data from multiple sources on... (View More) the internet, understand how rovers communicate with Earth. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, two Vocabulary Cards, a Vocabulary Toolbox and four workstation handouts. This is lesson 9 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
This is a lesson about how to answer a scientific or engineering question. Learners will refine the scientific question they generated in Lesson 5 so that it can be answered by data and/or modeling, brainstorm possible solutions for the scientific... (View More) question chosen, determine reasonableness of solutions, use concept maps to enhance meaningful learning. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, two Vocabulary Cards, and a concept map supplement. This is lesson 6 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
Learners will investigate probes and rovers to learn how they are built, learn about the propulsion, navigation, controls and daily handling of spacecraft, gather, and analyze data from multiple sources on the internet, and understand how rovers... (View More) communicate with Earth. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, two Vocabulary Cards, a Vocabulary Toolbox and four workstation handouts. This is lesson 9 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
In this lesson, learners will discover how certain snakes (pit-vipers) can find prey using a natural infrared sensor and will extend their understandings by exploring infrared technology applications. The lesson features background information for... (View More) the teacher, pre-requisite skills and knowledge for the student, a mini-exploration of infrared image technology, multiple image sets, assessment information, student worksheets, extension and transfer activities, and additional resources. This is lesson 2 on the Infrared Zoo website. (View Less)
Materials Cost: $1 - $5 per group of students
This activity has two purposes: challenge the learner to develop a procedure for investigating a research question and to learn more about factors affecting the dynamics of air in motion. It demonstrates that warm air and cold air differ in weight... (View More) and this difference affects air's vertical movement in the atmospheric column. Resources provided to students for this challenge include a homemade balance beam made of wood, two paper bags, a desk lamp, paper clips, tape and a thermometer. The resource includes background information, teaching tips and questions to guide student discussion. This is the chapter 8 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)
Learners will explore the difference between natural and artificial satellites and use images taken by robotic spacecraft and telescopes to gain an understanding of the Earth's place in space. Requires the books "Me on the Map" by Joan Sweeney and... (View More) "My Place in Space" by Robin and Sally Hirst. This is lesson 1 of 16 in the MarsBots learning module. (View Less)
Learners will simulate the experience of operating a rover on Mars, by giving specific commands to construct a Lego model with their partners. This will introduce students to the fundamental communication skills necessary for successful robotic... (View More) programming. This is lesson 11 of 16 in the MarsBots robotics learning module. This lesson is adapted from the Write It, Do It event, which is part of Science Olympiad. (View Less)