## You are here

Home ›## Narrow Search

**Earth and space science**

**Life sciences**

**Physical sciences**

Now showing results **1-4** of **4**

Unit two of the "Carbon Connections: The Carbon Cycle and the Science of Climate" curriculum examines the role of carbon and the carbon cycle in current climate. Students discover how carbon in Earth's system is monitored and also investigate the... (View More) roles of photosynthesis, cellular respiration, and humans in the carbon cycle and climate. The unit contains five lessons entitled: Moving Carbon, Exploring Limits, The Breathing Biosphere, Carbon Cycling, and Earth Takes a Breath. Each of the five lessons includes focus questions, hands-on activities, virtual field trips, and interactive models. (View Less)

In this activity, students build a simple computer model to determine the black body surface temperature of planets in our solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. Experiments altering the luminosity and... (View More) distance to the light source will allow students to determine the energy reaching the object and its black body temperature. The activity builds on student outcomes from activity A, "Finding a Mathematical Description of a Physical Relationship." It also supports inquiry into a real-world problem, the effect of urban heat islands and deforestation on climate. Includes a teacher's guide, student worksheets, and an Excel tutorial. This is Activity B of module 3, titled "Using Mathematic Models to Investigate Planetary Habitability," of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)

Students explore how mathematical descriptions of the physical environment can be fine-tuned through testing using data. In this activity, student teams obtain satellite data measuring the Earth's albedo, and then input this data into a... (View More) spreadsheet-based radiation balance model, GEEBITT. They validate their results against published the published albedo value of the Earth, and conduct similar comparisons Mercury, Venus and Mars. The resource includes an Excel spreadsheet tutorial, an investigation, student data sheets and a teacher's guide. Students apply their understanding to the real life problem of urban heat islands and deforestation. The activity links builds on student outcomes from activities A and B: "Finding a Mathematical Description of a Physical Relationship," and "Making a Simple Mathematical Model." This is Activity C in module 3, Using Mathematical Models to Investigate Planetary Habitability, of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)

This activity is about planetary climate. Once familiar with the factors that determine a planet's surface temperature, learners will use an interactive spreadsheet model of a planet's atmosphere to determine if greenhouse gases, luminosity of the... (View More) source, the distance of the planet from the source and the albedo of the planet can be manipulated so that the average surface temperature on Mars or Venus could support human life. Learners will then be asked to make some conclusions about these methods and suggest improvements for the spreadsheet model (see related resources for link to this model). The activity requires use of Microsoft Excel software. This is Activity D in the fourth module, titled "How do Atmospheres Affect Planetary Temperatures?," of "Earth Climate Course: What Determines a Planet's Climate?." (View Less)