You are here
Home ›Narrow Search
Now showing results 1-10 of 20
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)
Each lesson or activity in this toolkit is related to NASA's Lunar Reconnaissance Orbiter (LRO). The toolkit is designed so that each lesson can be done independently, or combined and taught in a sequence. The Teacher Implementation Guide provides... (View More) recommendations for combining the lessons into three main strands: 1) Lunar Exploration - These lessons provide a basic introduction to Moon exploration. Note that this strand is also appropriate for use in social studies classes. 2) Mapping the Moon - These lessons provide a more in-depth understanding of Moon exploration through the use of scientific data and student inquiry. The lessons also include many connections to Earth science and geology. 3) Tools of Investigation - These higher-level lessons examine the role of technology, engineering and physics in collecting and analyzing data. (View Less)
In this inquiry activity, teams of students are challenged with engineering a greenhouse heat trap for use with exotic plants. The investigation requires thermometers, plastic wrap, and a shoebox for each team. Students graph data and determine the... (View More) effectiveness of their design. This activity is supported by a textbook chapter, Atmospheric Energy, part of the unit, Energy Flow, in Global Systems Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)
In this problem-based learning activity, students assume roles as members of the Department of Energy Efficiency and Renewable Energy (EERE). Your major area of concern is locating areas best for collecting solar power. You will need to evaluate... (View More) locations in the Northern Hemisphere and Southern Hemisphere, and decide which is the best location for solar energy development. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
This problem-based learning module places learners in the role of researchers analyzing carbon monoxide's environmental impact. Both vehicle emissions and biomass burning are cited as events producing carbon monoxide that impact the environment.... (View More) Instructions for accessing NASA data from four different sources are provided along with suggested resources and investigations for classroom use. This module was developed to be used in the Earth System Science Education Alliance (ESSEA) courses for middle and high school teachers and is also available to teachers to adapt for general classroom use. (View Less)
Designed for use in the high school classroom, this curriculum uses Earth system data, models, and resources from five NASA missions (Aqua, Aura, ICESat, Landsat, and Terra) to engage students in a systems approach to climate change. The curriculum... (View More) consists of 21 lessons divided into four modules: 1. Introduction to Eco-Schools USA and NASA data. 2. Factors That Influence Temperature, 3. How Climate Change Affects Natural and Human Systems, and 4. Renewable Energy and a Call to Action. Each lessons provides technology tips, supplements, student worksheets, answer keys and appendices. (View Less)
In this problem-based learning unit, learners explore the possibilities of sustainable energy, and engage in a project to provide electricity for their city using alternative energy sources. Instructions to access NASA data are provided along with... (View More) additional resources and activities. This module was developed to be used in the Earth System Science Education Alliance (ESSEA) courses for middle and high school teachers and is also available to teachers to adapt for general classroom use. (View Less)
This is an online sorting game that compares the lifetime risk of death from an asteroid impact to other threats. For example, are you more likely to be killed by an amusement park ride or an asteroid impact? It is part of the Killer Asteroids Web... (View More) Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)
This is a multi-level, physics-based game that asks players to save Earth by using their spaceship to deflect an incoming asteroid. It is designed to accurately reflect the physics of space and could be used to help confront preconceptions about... (View More) motion and forces in space. It is part of the Killer Asteroids Web Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)