You are here
Home ›Narrow Search
Now showing results 1-10 of 64
Using stickers created from the templates provided, students create a Venn diagram of objects in our solar system, our galaxy and the universe. This short activity can be used as a formative assessment.
Materials Cost: 1 cent - $1 per group of students
This afterschool curriculum includes six lessons plus supplementary materials (e.g., videos, PowerPoint presentations, and images) that explore how light from the electromagnetic spectrum is used as a tool for learning about the Sun. The curriculum... (View More) is designed to be flexible to meet the needs of afterschool programs and includes recommendations for partial implementation based on time constraints. It was specifically designed to engage girls in science. (View Less)
Students will use the law of reflection to reflect a laser beam off multiple mirrors to hit a sticker in a shoebox. Since X-ray telescopes must use grazing angles to collect X-rays, students will design layouts with the largest possible angles of... (View More) reflection. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
Students participate in a series of activities to discover how astronomers use computers to create images and understand data. No programming experience is required; students will use pencilcode.net to complete such activities as creating a color,... (View More) exploring filters and color-shifting, and creating individual images of star-forming regions. These activities demonstrate a real world application of science, technology and art. (View Less)
Using the 5-E model, these lessons introduce planets, planetary systems, star types, exoplanets, transits, light curves, and the Planet Hunters citizen science project. Supplemental materials include data/image sheets. Next Generation Science... (View More) Standards (NGSS) are identified. (View Less)
In this activity, students create a scale model depicting the vertical distance from Earth’s surface to various features and objects, including Earth’s atmospheric layers, the Van Allen Radiation Belts, and geocentric satellites. Students also... (View More) compare the vertical distances to these features and objects with distances from their classroom to other common points on the ground. Includes background science information; student reading, handouts and worksheet; teacher information; and suggested extensions and adaptations for students with vision impairment. (View Less)
These guides showcase education and public outreach resources from across more than 20 NASA astrophysics missions and programs. The twelve guides - one for each month - contain a science topic, an interpretive story, a sky object to view with... (View More) finding charts, hands-on activities, and connections to NASA science. The guides are modular, so that educators can use the portions that are the most useful for their audiences/events. Following is the theme for each month: January - Betelgeuse, February - Orion Nebula, March - Pleiades, April - Pollux; May - Hubble Deep Field, June - Hercules Cluster, July - Ring Nebula & Veil Nebula, August - The Search for Habitable Worlds, September - Milky Way Galaxy, October - Upsilon Andromedae, November - Andromeda Galaxy, and December - Crab Nebula. (View Less)
Learners will shrink the scale of the solar system to the size of their neighborhood and compare the relative sizes of scale models of the planets, two dwarf planets, and a comet as represented by fruits and other foods. This activity requires... (View More) access to a large indoor or outdoor space (measuring at least 190 feet wide) where the children can model the orbit of Mercury around the Sun. It is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments. (View Less)
This model demonstrates convection currents and uses water, food coloring, a cup of very hot water and a votive candle as heat sources. Movie clips of demonstration setup and convection in action are provided. This activity is supported by a... (View More) textbook chapter, What Heats the Earth's Interior?, part of the unit, Energy Flow, in Global Systems Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)
In this hands-on activity, students learn about the different realms of the Universe and explore their sizes and relative scales. They will be guided through a process that uncovers the immense sizes of the Sun, Solar System, Solar Neighborhood,... (View More) Milky Way, Local Group, Supercluster, and the observable Universe. The full version of this activity involves students doing simple math computations, however it can also be done without the math. There are some inexpensive materials involved, as well as a powerpoint presentation. It is intended for grades 8-12, but can be adapted down for lower grade levels. (View Less)