You are here
Home ›Narrow Search
Now showing results 1-10 of 41
In this activity, students create a scale model depicting the vertical distance from Earth’s surface to various features and objects, including Earth’s atmospheric layers, the Van Allen Radiation Belts, and geocentric satellites. Students also... (View More) compare the vertical distances to these features and objects with distances from their classroom to other common points on the ground. Includes background science information; student reading, handouts and worksheet; teacher information; and suggested extensions and adaptations for students with vision impairment. (View Less)
Dieter Hartmann, a high-energy physicist, presents a story-based lesson on the science of Gamma-Ray astronomy. The lesson focuses on gamma-ray bursts; examining their sources, types, and links to the origin and evolution of the Universe. The... (View More) story-based format of the lesson also provides insights into the nature of science. Students answer questions based on the reading guide. A list of supplemental websites is also included. (View Less)
This is an activity about scale. Participants will arrange imagery of Earth and many other space objects in order of their size from smallest to largest, their distance from Earth's surface, their temperature from coolest to hottest, and/or their... (View More) age from youngest to oldest. By manipulating these images and discussing their ideas, children and adults represent and confront their own mental models of space and time. (View Less)
NASA scientist, Neil Gehrels, serves as your guide to this online lesson on gamma ray tools, which focuses on advances in detector technologies since the 1980s that have enabled us to capture and image high-energy phenomena. Dr. Gehrels explains... (View More) different methods for detecting and imaging high-energy particles, how they work, and the advantages and disadvantages of each, using examples and imagery from NASA missions. (View Less)
In this hands-on activity, students learn about the different realms of the Universe and explore their sizes and relative scales. They will be guided through a process that uncovers the immense sizes of the Sun, Solar System, Solar Neighborhood,... (View More) Milky Way, Local Group, Supercluster, and the observable Universe. The full version of this activity involves students doing simple math computations, however it can also be done without the math. There are some inexpensive materials involved, as well as a powerpoint presentation. It is intended for grades 8-12, but can be adapted down for lower grade levels. (View Less)
The 9-session NASA Family Science Night program emables middle school children and their families to discover the wide variety of science, technology, engineering, and mathematics being performed at NASA and in everyday life. Family Science Night... (View More) programs explore various themes on the Sun, the Moon, the Stars, and the Universe through fun, hands-on activities, including at-home experiments. Instructions for obtaining the facilitator's guide are available on the Family Science Night site. (View Less)
This is a math-science integrated unit about spectrographs. Learners will find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, the students will build their... (View More) own spectrographs in groups and research and design a ground or space-based mission using their creation. After the project is complete, student groups will present to the class on their trials, tribulations, and findings during this process. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will build an open spectrograph to calculate the angle the light is transmitted through a holographic diffraction grating. After finding the desired angles, the students will design their own spectrograph using the information learned. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will compare known elemental spectra with spectra of Titan and Saturn’s rings from a spectrometer aboard the NASA Cassini spacecraft. They identify the elements visible in the planetary and lunar spectra. The activity is part of Project... (View More) Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will use a spectrograph to gather data about light sources. Using the data they’ve collected, students are able to make comparisons between different light sources and make conjectures about the composition of a mystery light source. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)