You are here
Home ›Now showing results 1-7 of 7
The atmosphere (including weather and climate) is the focus of this GLOBE eTraining module. Protocols for investigating several characteristics of the atmosphere such as clouds, precipitation (rain and snow), air and surface temperature, and... (View More) relative humidity are explained. In addition, each module includes interactive digital field and lab experiences, and online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. In addition, each module also includes interactive digital field and lab experiences, and online assessments. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
The pedosphere (soil) is the focus of this GLOBE eTraining program module. Protocols for investigating soil temperature, moisture, characterization, density and infiltration are explained. In addition, each module includes interactive digital field... (View More) and lab experiences, and online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
This set of three videos illustrates how math is used in satellite data analysis. NASA climate scientist Claire Parkinson explains how the Arctic and Antarctic sea ice covers are measured from satellite data and how math is used to determine trends... (View More) in the data. In the first video, she leads viewers from satellite data collection through obtaining a time series of monthly Arctic and Antarctic average sea ice extents for November 1978-December 2016. In the second video, she begins with the time series from the first video, removes the seasonal cycle by calculating yearly averages, and proceeds to calculate the slopes of the lines to get trends in the data, revealing decreasing sea ice coverage in the Arctic and increasing sea ice coverage in the Antarctic. In the third video, she uses a more advanced technique to remove the seasonal cycle and shows that the trends are close to the same, whichever method is used. She emphasizes the power of math and that the techniques shown for satellite sea ice data can also be applied to a wide range of data sets. Note: See Related & Supplemental Resources for the maps and data files (1978-2016) that will allow you to do the calculations shown in the video. These also include data for different regions of the Arctic and Antarctic, enabling learners to do additional calculations beyond those shown in the videos. (View Less)
In this lesson, students will think about their experiences with hurricanes and severe storms, and then learn the basics of what causes hurricanes to form. Students will learn how hurricane prediction has progressed, and how satellite technology is... (View More) used to see inside storms to get improved data for enhancing computer-based mathematical models. To share what they’ve learned, students will create a news report (script or comic strip) to tell others about hurricanes and hurricane prediction. This lesson uses the 5E instructional model. TRMM is Tropical Rainfall Measuring Mission. (View Less)
This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)
Materials Cost: $1 - $5 per group of students
In this lesson, students will learn about the water cycle and how energy from the sun and the force of gravity drive this cycle. The emphasis in this lesson will be on having students understand the processes that take place in moving water through... (View More) Earth’s system. (View Less)
Students will use NASA's Global Climate Change website to research five of the key indicators (vital signs) of Earth’s climate health. These indicators are: global surface temperature, carbon dioxide concentrations, sea level, Arctic sea ice, and... (View More) land ice. They will use this information, shared in their expert groups, to create an informative poster about their assigned key indicator. The poster will be used by other groups to learn about all five of the key indicators and how Earth scientists use these indicators to analyze changes in Earth’s climate. The lesson plan uses the 5E instructional sequence. (View Less)