You are here
Home ›Now showing results 1-7 of 7
Students use the research topic questions generated in the earlier lesson entitled, “Mars Image Analysis,” to refine testable questions and develop hypotheses. The lesson is part of the Mars Education Program series; it models scientific inquiry... (View More) using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
Each lesson or activity in this toolkit is related to NASA's Lunar Reconnaissance Orbiter (LRO). The toolkit is designed so that each lesson can be done independently, or combined and taught in a sequence. The Teacher Implementation Guide provides... (View More) recommendations for combining the lessons into three main strands: 1) Lunar Exploration - These lessons provide a basic introduction to Moon exploration. Note that this strand is also appropriate for use in social studies classes. 2) Mapping the Moon - These lessons provide a more in-depth understanding of Moon exploration through the use of scientific data and student inquiry. The lessons also include many connections to Earth science and geology. 3) Tools of Investigation - These higher-level lessons examine the role of technology, engineering and physics in collecting and analyzing data. (View Less)
This activity is designed to introduce students to planetary geologic features and processes. First, students will use NASA satellite images to identify geologic surface features on the "Blue Marble" (Earth), and will explore the connection between... (View More) those features and the geologic processes that created them. Using that information, students will then compare and discuss similar features on images from other planets. Included are the following materials: teacher's guide (with reference and resource information), student's guide (with activity sheets), and multiple cards of planetary images. Note that the range of targeted grade levels is quite broad; however, explicit adaptations for younger students are highlighted throughout the teacher's guide. (View Less)
Materials Cost: $1 - $5 per group of students
In this activity, student teams design small-scale physical models of hot and cold planets, (Venus and Mars), and learn that small scale models allow researchers to determine how much larger systems function. There is both a team challenge and... (View More) competition built into this activity. Experimental findings are then used to support a discussion of human outposts on Mars. The resource includes an experimental design guide for students as well as a handout outlining a method for the design of controlled experiments, and student data sheets. Student questions and an essay assignment are provided as classroom assessments. This is Activity A in the second module, titled "Modeling hot and cold planets," of the resource, "Earth Climate Course: What Determines a Planet's Climate?" The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)
In this activity, students build a simple computer model to determine the black body surface temperature of planets in our solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. Experiments altering the luminosity and... (View More) distance to the light source will allow students to determine the energy reaching the object and its black body temperature. The activity builds on student outcomes from activity A, "Finding a Mathematical Description of a Physical Relationship." It also supports inquiry into a real-world problem, the effect of urban heat islands and deforestation on climate. Includes a teacher's guide, student worksheets, and an Excel tutorial. This is Activity B of module 3, titled "Using Mathematic Models to Investigate Planetary Habitability," of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)
Students explore how mathematical descriptions of the physical environment can be fine-tuned through testing using data. In this activity, student teams obtain satellite data measuring the Earth's albedo, and then input this data into a... (View More) spreadsheet-based radiation balance model, GEEBITT. They validate their results against published the published albedo value of the Earth, and conduct similar comparisons Mercury, Venus and Mars. The resource includes an Excel spreadsheet tutorial, an investigation, student data sheets and a teacher's guide. Students apply their understanding to the real life problem of urban heat islands and deforestation. The activity links builds on student outcomes from activities A and B: "Finding a Mathematical Description of a Physical Relationship," and "Making a Simple Mathematical Model." This is Activity C in module 3, Using Mathematical Models to Investigate Planetary Habitability, of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)
In this 2-part inquiry-based lesson, students conduct a literature search to determine the characteristics of the atmospheres of different planets (Venus, Mercury, Mars and Earth). After collecting and analyzing data, student teams design and... (View More) conduct a controlled physical experiment using a lab apparatus to learn about the interaction of becomes CO², air, and temperature. The resource includes student worksheets, a design proposal, and student questions. Connections to contemporary climate change are addressed. This lesson is the first of four in Topic 4, "How do Atmospheres Affect Planetary Temperatures?" within the resource, Earth Climate Course: What Determines a Planet's Climate? (View Less)