You are here
Home ›Now showing results 1-5 of 5
This is an activity about using models to solve a problem. Learners will use a previously constructed model of the MMS satellite to determine if the centrifugal force of the rotating MMS model is sufficient to push the satellite's antennae outward,... (View More) simulating the deployment of the satellites after launch. Then, learners will determine the minimum rotational speed needed for the satellite to successfully deploy the antennae. This is the seventh activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
In this lesson, learners will research facts about Atlas V rockets, which launched the MMS satellites. After, they will compute the speed of the launch rocket, given a data chart of time vs. distance from lift-off. Then, they will write a report... (View More) synthesizing their researched information. This lesson requires student access to internet accessible computers. This is lesson two of the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
In this activity, learners will build a structure using a shoebox, aluminum foil, paper, rubber bands, glue, tape, and other common materials that will meet the following criteria when tested: 1) protect an ice cube from melting under a hot lamp or... (View More) direct sunlight; 2) protect an egg from fracture when dropped from a height of ten feet; and 3) cost as little as possible. These tasks relate to the overarching concepts of space as a hostile environment, engineering that is needed to build and launch astronomical instruments, and testing of spacecraft and instrument models. This activity is from the Touch the Sun educator guide. (View Less)
Materials Cost: $1 - $5 per group of students
In this lesson, learners will construct a 3D scale model of one of the MMS satellites. After, they will calculate the octagonal area of the top and bottom of the satellites, given the measurements of the satellite. Then, learners will compare the... (View More) octagonal cross-section area of the satellites with the circular cross-section area of the launch vehicle to determine if the eight-sided spacecraft will fit the circular rocket hull. This is lesson one of the MMS Mission Educator's Instructional Guide, which uses examples from the MMS Mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
Using an online interactive platform, learners will explore our solar system from the perspective of the Sun. They will observe the motion of different worlds to determine their location in the solar system. Then they will launch probes to search... (View More) these small worlds (bodies in the solar system not classified as a planet or a moon) for the caches hidden on them in order to collect the astrocoins inside. A 5E instructional lesson allows students to analyze a model to locate small worlds, define speed/distance relationships, and identify model limitations. Images, worksheets and a rubric are included. Instructional objectives and learning outcomes are aligned with Next Generation Science Standards (NGSS); the NRC Framework for K-12 Science Education; Common Core State Standards for English Language Arts; and A Framework for 21st Century Learning. (View Less)