You are here
Home ›Narrow Search
Now showing results 1-10 of 13
This is an online lesson associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. This activity is scheduled to occur during Monday of... (View More) Solar Week. The lesson introduces the concept of astronomical filters and their connections to imaging different objects in space. Learners will explore perceptions of images as seen using different colors of light, construct a filter wheel, and practice investigating various astronomical images using the filter wheel. This material was designed to highlight how filters are useful to astronomers and show how a real astronomical telescope uses filters to image the Sun. Outside of Solar Week, information, activities, and resources are archived and available online at any time. (View Less)
Learners work in teams to determine a landing site for their Mars Rover that best relates to their scientific question. They use technology skills to research Gale Crater through an online interactive module and learn about features of Mars through... (View More) use of Google Earth Mars. The lesson uses the 5E instructional model and includes: TEKS (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 8 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
This is an activity about using models to solve a problem. Learners will use a previously constructed model of the MMS satellite to determine if the centrifugal force of the rotating MMS model is sufficient to push the satellite's antennae outward,... (View More) simulating the deployment of the satellites after launch. Then, learners will determine the minimum rotational speed needed for the satellite to successfully deploy the antennae. This is the seventh activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
Learners will take and then compare the images taken by a camera - to learn about focal length (and its effects on field of view), resolution, and ultimately how cameras take close-up pictures of far away objects. Finally, they will apply this... (View More) knowledge to the images of comet Tempel 1 taken by two different spacecraft with three different cameras, in this case Deep Impact and those expected/obtained from Stardust-NExT. This lesson could easily be adapted for use with images from other NASA missions. (View Less)
Activities in this lesson promote a fundamental understanding of relationships between graphed data. Sample graphs allow students to become familiar with interpreting data and to recognize relationships between variables. Additional microsets of... (View More) atmospheric data (gases, clouds, pressures, temperatures, precipitation) are included. Students will use that data to predict the appearance of a graph, plot the data points, study the data pattern and draw a conclusion. In addition, students will determine if a relationship exists between two variables; leading to an understanding that relationships between variables can be more complicated than simple linear ones. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes sample graphs, related links, extensions, and an online glossary. (View Less)
El Niño impacts sea surface height, sea surface temperature and wind vectors. In this lesson, data for each of those three characteristics from the 1997-98 El Niño event will be analyzed and compared. Students will work in teams of 3 throughout... (View More) the activity, initially doing a team analysis of a single characteristic, and then jig-sawing into other groups to share information. The lesson culminates in a series of questions, a written summary and a comparison to similar observations done by scientists. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary, and a list of related AP Environmental Science topics. (View Less)
In this lesson, students investigate the relationship between precipitation, surface temperature and vegetation for four geographic locations. Students will download graphs of each of the three system components (vegetative index, surface... (View More) temperature and precipitation) for a specific latitude and longitude point during the period of January 2002-June 2004. After downloading data for three other locations, students will work with a total of 12 graphs to compare and analyze the data. They will then predict the climate zone and identify the climate type for each location. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary and a list of related AP Environmental Science topics. (View Less)
Learners will investigate, compare, and describe patterns in Solar System data. They will then hypothesize about the formation of the Solar System based on data and explain how extrasolar planets can be discovered. In the first activity, the... (View More) students investigate Solar System data to find clues to how our planetary system was formed. By the end of the activity, the students come to understand that other stars form just like the Sun, and, therefore, many stars could have planets around them. The second activity examines how scientists can find these extrasolar planets. By observing the behavior of a model star-planet system, the students come to understand that it is possible to see the effect a planet has on its parent star even if the planet cannot be seen directly. By comparing the properties of our Solar System with other planetary systems, we can gain a deeper understanding of planetary systems across the Universe. Note: The MESSENGER mission to Mercury that is mentioned in this lesson ended operations April 30, 2015. For the latest information about MESSENGER and NASA's solar system missions see the links under Related & Supplemental Resources (right side of this page). (View Less)
In this inquiry exploration, student design an experiment to test the absorption of heat by different earth materials. Materials required include plastic water bottles, soil, sand, water, thermometers, lamp with 60 watt bulb, and stopwatch. This... (View More) activity is part of the MY NASA DATA Scientist Tracking Network unit, designed to provide practice in accessing and using authentic satellite data. (View Less)
In this activity, students use different perspectives to gather information about an area, and discuss the advantages of this approach. It should be conducted in a grassy area, and requires a few pennies. The resource includes a set of images taken... (View More) from several perspectives, teacher notes, and Web links. This is Lesson 1 of Remote Sensing, part of IMAGERS, Interactive Media Adventures for Grade School Education using Remote Sensing. The website provides hands-on activities for the classroom supporting the science content in two interactive media books, The Adventures of Echo the Bat and Amelia the Pigeon. (View Less)