You are here
Home ›Narrow Search
Now showing results 1-10 of 16
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
This chapter describes the technique of preparing GIS-ready data and shows how to map that data and conduct basic analyses using a geographic information system (GIS). First, the user will download and format near real-time and historical earthquake... (View More) data from the USGS. Using latitude and longitude fields, they will then plot these data in a GIS. Next, they will analyze patterns by querying records and overlaying datasets. Finally, they will examine earthquake distributions, monitor current earthquake activity, and try to predict where the next big earthquake will occur on Earth. Includes teaching notes, step-by-step instructions, case study, tools and data, and going further. This chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
This chapter walks users through a technique for documenting change in before-and-after sets of satellite images. The technique can be used for any set of time-series images that are spatially registered to show the exact same area at the same... (View More) scale. In the chapter, users examine three Landsat images of the Pearl River delta in southeastern China. In these images, users observe changes in land use, then identify and outline areas of new land that were created by dredging sediments from the river bottom. The final product is an annotated image that highlights new land and indicates when it was created. The chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
This is a math-science integrated unit about spectrographs. Learners will find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, the students will build their... (View More) own spectrographs in groups and research and design a ground or space-based mission using their creation. After the project is complete, student groups will present to the class on their trials, tribulations, and findings during this process. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
In this data activity, students explore the relationship between surface radiation and mean surface temperature in several geographic regions. By observing how these parameters change with latitude, students will understand the relationship between... (View More) solar radiation and seasonal temperature variation. This activity is part of the MY NASA DATA Scientist Tracking Network unit, designed to provide practice in accessing and using authentic satellite data. (View Less)
This activity provides a visual example of convection in fluids. Students will record their predictions and observations on diagrams of the experimental set-up showing convection currents. Materials required include hot and cold colored water,... (View More) thermometers, stopwatch, and index cards. This activity is part of the MY NASA DATA Scientist Tracking Network unit, designed to provide practice in accessing and using authentic satellite data. (View Less)
In this inquiry exploration, student design an experiment to test the absorption of heat by different earth materials. Materials required include plastic water bottles, soil, sand, water, thermometers, lamp with 60 watt bulb, and stopwatch. This... (View More) activity is part of the MY NASA DATA Scientist Tracking Network unit, designed to provide practice in accessing and using authentic satellite data. (View Less)
This module is about collaboration and communication strategies that are used during mission design. Learners will strengthen their understanding of and ability to use collaborative processes and communication practices to clarify, conceptualize,... (View More) and make decisions. They will compare the risks of varying courses of action that confront scientists and engineers. After the risks are identified, they will gather and convey evidence supporting and refuting the viability of these actions, and reach consensus. The module strategies rely primarily on student investigation into the background information that is necessary to support arguments; make quantitative risk analyses; engage in debate, role-playing, and persuasive writing/communication processes; and practice group decision-making procedures. (View Less)
In this online, interactive module, students learn how enhanced Earth remote-sensing capabilities are used by dozens of satellites that are continuously collecting data from multiple vantage points. This allows scientists from different countries to... (View More) transcend political and geographical boundaries by sharing data and ideas towards the common mission of caring for planet Earth. The module is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections. (View Less)
In this online, interactive module, students will learn how to interpret weather patterns from satellite images, predict storm paths and forecast the weather for their area. The module is part of an online course for grades 7-12 in satellite... (View More) meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections. (View Less)