You are here
Home ›Narrow Search
Now showing results 1-5 of 5
Learners will explore spacecraft radio communications concepts, including the speed of light and the time-delay for signals sent to and from spacecraft. Learners measure the time it takes for a radio signal to travel to a spacecraft using the speed... (View More) of light, demonstrate the delay in radio communication signals to and from a spacecraft, and devise unique solutions to the radio-signal-delay problem. In an extension, learners are asked to calculate the distance the spacecraft traveled. All NASA spacecraft missions have a telecommunications system and use radio waves to transmit signals. The context for this activity is sending a command to the New Horizons spacecraft telling it to take a picture of Pluto. Includes teacher background, adaptations, and student data sheets. (View Less)
Learners will design and conduct experiments to answer the question, "how does distance and inclination affect the amount of heat received from a heat source?" They will measure heat change as a function of distance or viewing angle. From that... (View More) experiment, they will identify how the MESSENGER mission to Mercury takes advantage of these passive cooling methods to keep the spacecraft comfortable in a high-temperature environment. This is lesson 3 from MESSENGER Education Module: Staying Cool. Note: the student guide starts on p. 24 of the PDF. (View Less)
Learners will construct a simple device to measure how effective different materials are for protecting against sunlight, explain how heat relates to the motion of atoms and molecules, describe how heat can be transmitted from one place to another,... (View More) explain how sunlight arriving on Earth interacts with matter, and describe how MESSENGER is protected by a simple sunshade in the hot Mercurian environment. Materials required to do this activity include several commonly-found items (e.g., coffee cans, ice cubes, tape, ruler, calculators, stopwatch, and scale). This is lesson 3 of 4 at the Grade 9-12 range of "Staying Cool." (View Less)
Learners will consider the essential question, "How much energy does sunlight provide to the Earth and what is its role in the Earth’s energy resources?" Activities include building a device to measure the solar constant - the amount of energy in... (View More) sunlight - calculating the amount of energy arriving at the Earth from the Sun, and describing the differences in solar radiation at Mercury compared to Earth. This is activity 1 of 4 in the module, Staying Cool. Note: the student guide starts on p. 21 of the PDF. (View Less)
This is a lesson about impact craters; the relationships between crater size, projectile size and projectile velocity; and the transfer of energy in the cratering process. Learners will create plaster of Paris or layered dry impact craters and... (View More) conduct controlled experiments using mass and velocity as the independent variables. Energy calculations for advanced classes, and vocabulary words are included. This is lesson 6 of 19 in Exploring Meteorite Mysteries. (View Less)
Materials Cost: $1 - $5 per group of students