## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **1-10** of **18**

Students will use the law of reflection to reflect a laser beam off multiple mirrors to hit a sticker in a shoebox. Since X-ray telescopes must use grazing angles to collect X-rays, students will design layouts with the largest possible angles of... (View More) reflection. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)

This collection of math problems is based on a weekly series of space and Earth science problems distributed to teachers during the 2013-2014 school year. The problems were intended for students looking for additional challenges in the math and... (View More) physical science curriculum and were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. Includes information for teachers and answer key. (View Less)

This is an online set of information about astronomical alignments of ancient structures and buildings. Learners will read background information about the alignments to the Sun in such structures as the Great Pyramid, Chichen Itza, and others.... (View More) Next, the site contains 10 short problem sets that involve a variety of math skills, including determining the scale of a photo, measuring and drawing angles, plotting data on a graph, and creating an equation to match a set of data. Each set of problems is contained on one page and all of the sets utilize real-world problems relating to astronomical alignments of ancient structures. Each problem set is flexible and can be used on its own, together with other sets, or together with related lessons and materials selected by the educator. This was originally included as a folder insert for the 2010 Sun-Earth Day. (View Less)

This is a lesson about using the light from the star during an occultation event to identify the atmosphere of a planet. Learners will add and subtract light curves (presented as a series of geometrical shapes) to understand how this could occur.... (View More) The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)

This is an activity about measurement. Learners will label key points and features on a rectangular equal-area map and measure the distance between pairs of points in order to calculate the actual physical distance on the Sun that the point pairs... (View More) represent. This is Activity 5 of the Space Weather Forecast curriculum. (View Less)

This is a booklet containing 31 problem sets that involve a variety of math skills, including scientific notation, simple algebra, and calculus. Each set of problems is contained on one page. Learners will use mathematics to explore varied space... (View More) science topics including black holes, ice on Mercury, a mathematical model of the Sun's interior, sunspots, the heliopause, and coronal mass ejections, among many others. (View Less)

This is a lesson about discovering distant planets using an Earth-based observing technique called stellar occultation. Learners will explore how a stellar occultation occurs, how planetary atmospheres can be discovered, and how planetary diameters... (View More) can be determined using actual light curves from stellar occultation events. Includes adaptations for younger students and those with visual impairments. (View Less)

In this activity, students work in teams to calculate relative air mass and demonstrate how solar elevation angle affects the intensity of light that reaches an observer on the ground. The resource includes a student data sheet. This learning... (View More) resource is part of the Atmosphere chapter of the GLOBE Teacher's Guide, and is supported by the GLOBE Aerosol protocol. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)

Materials Cost: 1 cent - $1 per group of students

In this activity, students work in teams to calculate relative air mass and demonstrate how solar elevation angle affects the intensity of light that reaches an observer on the ground. The resource includes a student data sheet. It is part of the... (View More) Atmosphere chapter of the GLOBE Teacher's Guide, and is supported by the GLOBE Aerosol protocol. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)

Materials Cost: 1 cent - $1 per group of students

Students will work in teams to create visual models to assist in understanding the volume of surface ozone in the air. Students construct cubes of different volumes and compare them to get a feel for parts per million by volume and parts per billion... (View More) by volume. Resource includes a paper template for creating the cube and a student worksheet. This is a learning activity associated with the GLOBE Atmosphere investigations and is supported by the Atmosphere chapter of the GLOBE Teacher’s Guide. (View Less)

Materials Cost: 1 cent - $1 per group of students