## You are here

Home ›Now showing results **1-4** of **4**

This is a lesson about magnetism and solar flares. Learners will evaluate real solar data and images in order to calculate the energy and magnetic strength of a solar flare moving away from the Sun as a coronal mass ejection. This is Activity 3 in... (View More) the Exploring Magnetism in Solar Flares teachers guide. (View Less)

This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)

This activity lets students measure distances in the classroom using parallax. The exercise can be done either at a high school level using trigonometric functions, or at a middle school level using simple arithmetic approximations to the... (View More) trigonometric functions. A work sheet is provided for the middle-school-level activity.The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

Learners will use simple sports balls as scale models of Earth and the Moon. Given the astronomical distance between Earth and the Moon, students will determine the scale of the model system and the distance that must separate the two models. This... (View More) activity is in Unit 1 of the Exploring the Moon teachers guide, which is designed for use especially, but not exclusively, with the Lunar Sample Disk program. (View Less)