## You are here

Home ›Now showing results **1-10** of **23**

This set of three videos illustrates how math is used in satellite data analysis. The videos feature NASA senior climate scientist Claire Parkinson. Parkinson explains how the Arctic and Antarctic sea ice covers are measured from satellite data and... (View More) how math is used to determine trends in the data. In the first video, she leads viewers from satellite data collection through obtaining a time series of monthly average sea ice extents for November 1978 – December 2012, for the Arctic and Antarctic. In the second video, she begins with the time series from the first video, removes the seasonal cycle by calculating yearly averages, and proceeds to calculate the slopes of the lines to get trends in the data, revealing decreasing sea ice coverage in the Arctic and increasing sea ice coverage in the Antarctic. In the third video, she uses a more advanced technique to remove the seasonal cycle and shows that the trends are close to the same, whichever method is used. She emphasizes the power of math and that the techniques shown for satellite sea ice data can also be applied to a wide range of data sets. (View Less)

This worksheet introduces students to the Aura satellite and its Ozone Monitoring Instrument (OMI). Students are asked to visit the Aura website and examine OMI data visualizations to learn about emissions of atmospheric gases such as sulfur... (View More) dioxide, nitrogen oxide and nitrogen dioxide. Students gain experience interpreting OMI data visualizations and are asked to consider implications for climate and human health. (View Less)

In these math problems, students will examine the characteristics of water droplets in clouds.

In this problem set, students learn about rainfall rates and how to convert them into the volume of water that falls.

Math skills are applied throughout this investigation of windows. Starting with basic window shapes, students determine area and complete a cost analysis, then do the same for windows of unconventional shapes. Students will examine photographs taken... (View More) by astronauts through windows on the Space Shuttle and International Space Station to explore the inverse relationship between lens size and area covered. This lesson is part of the Expedition Earth and Beyond Education Program. (View Less)

This self-paced, interactive tutorial enables learners to identify and measure iceberg size from remotely-sensed satellite images. Two techniques are explored: the geometric shape method, which provides a rapid rough estimate of area; and the pixel... (View More) count method, which employs special software to measure the size more accurately. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)

In this problem set, learners will calculate the parts-per-hundred measure for different scenarios. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change.

This problem set is about scale. Using a ruler, learners will measure the distance between two points on a satellite image and determine the scale of the image and other information to answer a series of questions. Answer key is provided. This is... (View More) part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change. (View Less)

This self-paced, interactive tutorial guides learners through the decision-making process in locating data that will enable the identification of tabular icebergs, including: selecting the appropriate satellite orbit, and identifying the optimal... (View More) solar and infrared wavelength values to discriminate between water and ice in remotely-sensed images. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)

In this problem set, learners will determine the scale of a false-color infrared satellite image of Paris and measure several of the features depicted in it. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth... (View More) Science and Climate Change. (View Less)