## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **1-10** of **27**

This is an activity about solar energy. Learners will first use computers to research and learn how solar panels convert sunlight into electricity. Next, they will calculate the surface area of solar panels board a satellite and their total power... (View More) generated in various positions of the satellite, given the dimension of the panels. After, learners will organize and write a report summarizing the information about the MMS mission satellites. This activity requires student access to internet accessible computers. This is lesson four as part of the MMS Mission Educator's Instructional Guide. (View Less)

This is a lesson about size and scale of the solar system. Learners will review the structure, content and size of the Solar System. This lesson is designed using the 5E instructional model and includes: teacher training, unit pacing guides,... (View More) essential questions, a black-line master science notebook, a student presentation booklet, supplemental materials, and vocabulary for both students and teachers. This is lesson 1 as part of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)

This is a building-wide enrichment program consisting of a series of posters and accompanying questions designed to pique student interest in science concepts and their application to the world in which we live. Accompanying each poster is a series... (View More) of question sheets of increasing difficulty levels that students answer and submit at a designated location (collection box, office, etc.). Random prize drawings can be used to recognize/celebrate student participation. The purpose is to expose students to and create school-wide interest about science so students want to "STOP for Science" as displays are changed throughout the year. Although the focus is building-wide, content can be linked to classrooms through use of accompanying teacher resource guides. The website includes several resources for program facilitators, including posters, answer sheets, podcasts, implementation guide and webinars for facilitators. The program targets grades 3-6 for independent use, but can be used with grades K-2 with adult or upper grade level assistance. Each poster in the series stands alone and is not tied to concepts in other posters. Therefore, posters can be displayed in any sequence desired. (View Less)

This is a booklet containing 31 problem sets that involve a variety of math skills, including scientific notation, simple algebra, and calculus. Each set of problems is contained on one page. Learners will use mathematics to explore varied space... (View More) science topics including black holes, ice on Mercury, a mathematical model of the Sun's interior, sunspots, the heliopause, and coronal mass ejections, among many others. (View Less)

In this activity, students estimate the size of the visible universe in relation to the size of the Milky Way Galaxy. To do so, students will get a sense of scale and will convert from centimeters to kilometers. This is the first activity in the... (View More) "Hidden Lives of Galaxies" information and activity booklet. It is designed for use with "The Hidden Lives of Galaxies" poster. (View Less)

This is a lesson about magnetism and solar flares. Learners will evaluate real solar data and images in order to calculate the energy and magnetic strength of a solar flare moving away from the Sun as a coronal mass ejection. This is Activity 3 in... (View More) the Exploring Magnetism in Solar Flares teachers guide. (View Less)

This interactive, online module allows students to discover the velocity needed to escape the Earth's gravitational pull. By completing this activity, students discover how mathematics can be used to find escape velocity. Students may complete this... (View More) activity independently or in small groups. Detailed teacher pages, identified as Teaching Tips on the title page, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This module is a subsection of "Is a Black Hole Really A Hole?". It is within the online exploration No Escape: The Truth about Black Holes available on the Amazing Space website. (View Less)

This is a detailed historical lesson about comets, distant icy worlds often visible to observers on Earth. Learners will consider the essential question, "What are comets?" They will practice observation and "noticing" skills as they enact a story... (View More) of comets travelling through the solar system and examine images of comets and the current space missions exploring them. This is lesson 10 of 12 in the unit, Exploring Ice in the Solar System. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)