## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **1-10** of **23**

This collection of math problems is based on a weekly series of space and Earth science problems distributed to teachers during the 2013-2014 school year. The problems were intended for students looking for additional challenges in the math and... (View More) physical science curriculum and were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. Includes information for teachers and answer key. (View Less)

This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)

In this lesson plan students use temperature data to look at the measures of central tendency. By using mean, median, and mode, students will gain a better understanding about weather patterns from several locales throughout Virginia.

This is a booklet containing 31 problem sets that involve a variety of math skills, including scientific notation, simple algebra, and calculus. Each set of problems is contained on one page. Learners will use mathematics to explore varied space... (View More) science topics including black holes, ice on Mercury, a mathematical model of the Sun's interior, sunspots, the heliopause, and coronal mass ejections, among many others. (View Less)

This is a lesson about magnetism and solar flares. Learners will evaluate real solar data and images in order to calculate the energy and magnetic strength of a solar flare moving away from the Sun as a coronal mass ejection. This is Activity 3 in... (View More) the Exploring Magnetism in Solar Flares teachers guide. (View Less)

In this activity, students estimate the size of the visible universe in relation to the size of the Milky Way Galaxy. To do so, students will get a sense of scale and will convert from centimeters to kilometers. This is activity one in the "Hidden... (View More) Lives of Galaxies" information and activity booklet that was designed for use with "The Hidden Lives of Galaxies" poster. The booklet includes student worksheets and background information for the teacher. (View Less)

This interactive, online module allows students to discover the velocity needed to escape the Earth's gravitational pull. By completing this activity, students discover how mathematics can be used to find escape velocity. Students may complete this... (View More) activity independently or in small groups. Detailed teacher pages, identified as Teaching Tips on the title page, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This module is a subsection of "Is a Black Hole Really A Hole?". It is within the online exploration No Escape: The Truth about Black Holes available on the Amazing Space website. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students add and subtract log distances on their Log Tapes to discover that the corresponding numbers multiply and divide. This will lead them to an experiential understanding of the laws of logarithms. This is activity B2 in the... (View More) "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)