## You are here

Home ›Now showing results **1-10** of **10**

This is an activity about solar energy. Learners will first use computers to research and learn how solar panels convert sunlight into electricity. Next, they will calculate the surface area of solar panels board a satellite and their total power... (View More) generated in various positions of the satellite, given the dimension of the panels. After, learners will organize and write a report summarizing the information about the MMS mission satellites. This activity requires student access to internet accessible computers. This is lesson four as part of the MMS Mission Educator's Instructional Guide. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. These events create space weather. Students will learn more about space weather and how it affects... (View More) Earth through reading a NASA press release and viewing a NASA eClips video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of a sample of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. Students will learn more about space weather through reading a NASA press release and viewing a NASA... (View More) eClips video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of different samples of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the Transit of Venus through reading a NASA press release and viewing a NASA eClips video that describes several ways to observe transits. Then students will study angular measurement by learning about parallax and how... (View More) astronomers use this geometric effect to determine the distance to Venus during a Transit of Venus. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

This is a lesson about magnetism and solar flares. Learners will evaluate real solar data and images in order to calculate the energy and magnetic strength of a solar flare moving away from the Sun as a coronal mass ejection. This is Activity 3 in... (View More) the Exploring Magnetism in Solar Flares teachers guide. (View Less)

This is an activity about the mathematics of oscillation. Using data obtained in ninth and tenth activities in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide, learners will plot the formula... (View More) X(t)=X(0)cos(ft) or X(t)=X(0)sin(ft), depending on the data obtained during the oscillation experiments. Then, the mathematical model for oscillation is further refined by including damping. This is the eleventh activity in the guide and requires prior use and construction of a soda bottle magnetometer. (View Less)

This is an activity about the magnetic deflection. Learners will observe and measure the deflection that an iron mass causes in a soda bottle magnetometer and plot the data. The data should show the inverse-square cube law of change in the magnetic... (View More) field. This is the twelfth activity in the guide and requires prior use and construction of a soda bottle magnetometer, as well as a six to ten pound container of iron nails (or an equivalent iron mass). (View Less)

This is an activity about satellite size. Learners will calculate the volume of the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite, the first satellite mission to image the Earth's magnetosphere. They will then determine the... (View More) effect of doubling and tripling the satellite dimensions on the satellite's mass and cost. This is the first activity in the Solar Storms and You: Exploring Satellite Design educator guide. (View Less)

This is an activity about interpretation of a data graph. Learners will use mathematics to create a pie chart of percentages and answer accompanying questions. This is the fourth activity in the Solar Storms and You: Exploring Satellite Design... (View More) educator guide. (View Less)

This is an activity about scale model building. Learners will use mathematics to determine the scale model size, construct a pattern, and build a one-fourth size scale model of the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration)... (View More) satellite, the first satellite mission to image the Earth's magnetosphere. This is the third activity in the Solar Storms and You: Exploring Satellite Design educator guide. (View Less)