## You are here

Home ›## Narrow Search

**High school**

**Higher education**

**Earth and space science**

**Mathematics**

Now showing results **21-30** of **36**

This is an activity about the properties and characteristics of Earth’s magnetic field as shown through magnetometer data and its 3D vector nature. This resource builds understanding of conceptual tools such as the addition of vectors and... (View More) interpreting contour maps displaying magnetic signature data. Learners will make several paper 3D vector addition models, watch podcasts on how to analyze magnetometer data, and employ 3D vector plots to create a model of the 3D magnetic field in the location of the magnetometer closest to their town. This is a multi-step activity with corresponding worksheets for each step. The activity uses data from the THEMIS (Time History of Events and Macroscale Interactions during Substorms) GEONS magnetometer, and requires the use of a computer with internet access and speakers, 2-inch polystyrene balls and bamboo skewers. This is activity 16 from Exploring Magnetism: Earth's Magnetic Personality. (View Less)

This is an activity about vectors and velocity. It outlines the addition and subtraction of vectors, and introduces the application of trigonometry to describing vectors. The resource is designed to support student analysis of THEMIS (Time History... (View More) of Events and Macroscale Interactions during Substorms) Magnetometer line-plot data. Learners will complete worksheets consisting of problem sets that allow them to work with vector data in magnetic fields. This is activity 15 from Exploring Magnetism: Earth's Magnetic Personality. (View Less)

This activity lets students measure distances in the classroom using parallax. The exercise can be done either at a high school level using trigonometric functions, or at a middle school level using simple arithmetic approximations to the... (View More) trigonometric functions. A work sheet is provided for the middle-school-level activity.The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this activity, students work in teams to calculate relative air mass and demonstrate how solar elevation angle affects the intensity of light that reaches an observer on the ground. The resource includes a student data sheet. This learning... (View More) resource is part of the Atmosphere chapter of the GLOBE Teacher's Guide, and is supported by the GLOBE Aerosol protocol. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)

Materials Cost: 1 cent - $1 per group of students

In this activity, students work in teams to calculate relative air mass and demonstrate how solar elevation angle affects the intensity of light that reaches an observer on the ground. The resource includes a student data sheet. It is part of the... (View More) Atmosphere chapter of the GLOBE Teacher's Guide, and is supported by the GLOBE Aerosol protocol. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)

Materials Cost: 1 cent - $1 per group of students

In this activity, students produce a land cover map of a 15 km x 15 km GLOBE study site from hard copies of Landsat satellite images. Students place clear transparencies over the Landsat TM images and use markers to outline and classify areas of... (View More) different land cover using the MUC System. Students use their local expertise of their GLOBE study site and their sample site measurements to create and assess the accuracy of their maps. The resource includes a sample Landsat image, an example of an accuracy assessment work sheet, and a difference-error matrix to validate the degree of accuracy of the student product. This resource is a procedural tutorial supporting the protocol within the Land Cover/Biology chapter of the GLOBE Teacher's Guide. (View Less)

Materials Cost: 1 cent - $1 per group of students

In these activities, students investigate how gamma ray bursts emit energy in beams (as opposed to emitting light in all directions) and investigate the implications of this on the total number of gamma ray bursts seen in the universe. This activity... (View More) is part of a unit designed to use gamma-ray bursts - unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)

In this activity, students look at the distribution of aluminum foil balls arranged in a circle on the floor, and compare them to the distribution of gamma-ray bursts on the sky. This activity is part of a unit designed to use gamma-ray bursts -... (View More) unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)

In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations,... (View More) learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use log tapes and base-two slide rules as references to graph exponential functions and log functions in base-10 and base-2. Students discover that exponential and log functions are inverse, reflecting across the y = x axis... (View More) as mirror images. This is activity E2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)