## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **41-50** of **220**

This is a math-science integrated unit about spectrographs. Learners will find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, the students will build their... (View More) own spectrographs in groups and research and design a ground or space-based mission using their creation. After the project is complete, student groups will present to the class on their trials, tribulations, and findings during this process. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)

This is a lesson about using the light from the star during an occultation event to identify the atmosphere of a planet. Learners will add and subtract light curves (presented as a series of geometrical shapes) to understand how this could occur.... (View More) The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)

In this chapter, students will explore relationships between air quality and population density using the image visualization tool, Google Earth. You will learn how to download NO2 data and analyze them to develop a conceptual understanding of how... (View More) population and topography can influence the air quality of a region. Once you have learned the techniques, you are encouraged to explore seasonal changes in nitrogen dioxide concentrations at other locations. This chapter is part of the Earth Exploration Toolbook (EET). Each EET chapter provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)

This math problem determines the areas of simple and complex planar figures using measurement of mass and proportional constructs. Materials are inexpensive or easily found (poster board, scissors, ruler, sharp pencil, right angle), but also... (View More) requires use of an analytical balance (suggestions are provided for working with less precise weighing tools). This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This collection of 103 individual sets of math problems derives from images and data generated by NASA remote sensing technology. Whether used as a challenge activity, enrichment activity and/or a formative assessment, the problems allow students to... (View More) engage in authentic applications of math. Each set consists of one page of math problems (one to six problems per page) and an accompanying answer key. Based on complexity, the problem sets are designated for two grade level groups: 6-8 and 9-12. Also included is an introduction to remote sensing, a matrix aligning the problem sets to specific math topics, and four problems for beginners (grades 3-5). (View Less)

Learners will be introduced to the concepts of error analysis, including standard deviation. They will apply the knowledge of averages (means), standard deviation from the mean, and error analysis to their own classroom distribution of heights. They... (View More) will then apply this knowledge to data from the Student Dust Counter (SDC) onboard the New Horizons mission to determine the issues associated with taking data, including error and noise. **Note:** Updated links to the Student Dust Counter Data Viewer and website are provided under Related & Supplemental Resources (right). (View Less)

This lesson provides a way for students to determine the relationship between the distance from a light source and its brightness. Once students discover the relationship, they can begin to understand how astronomers use this knowledge to determine... (View More) the distances to stars and far away galaxies. (View Less)

This is an activity about detecting elements by using light. Learners will develop and apply methods to identify and interpret patterns to the identification of fingerprints. They look at fingerprints of their classmates, snowflakes, and finally... (View More) "spectral fingerprints" of elements. They learn to identify each image as unique, yet part of a group containing recognizable similarities. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)

Learners will explore the binary and hexidecimal systems and how engineers use them to translate spacecraft data into images.

This book offers an introduction to the electromagnetic spectrum using examples of data from a variety of NASA missions and satellite technologies. The 84 problem sets included allow students to explore the concepts of waves, wavelength, frequency,... (View More) and speed; the Doppler Shift; light; and the energy carried by photons in various bands of the spectrum. Extensive background information is provided which describes the nature of electromagnetic radiation. (View Less)