## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **1-10** of **19**

This multi-phased learning package progresses from guided engineering to an open mission design challenge through scaffolded and easy-to-implement teaching tools, lessons and art activities. By building an O-REx spacecraft model in a collaborative... (View More) team, learners take on authentic roles, deepening their understanding of the workings of a NASA mission. Throughout, engineering concepts are presented with a humanistic perspective to make technical concepts relatable. Teamwork is emphasized as it relates to the legacy and practice of invention, design and engineering. The program is aligned to Next Generation Science Standards (NGSS). (View Less)

This unit focuses on local plant species; students learn to identify common species and will examine their life cycle characteristics as evidence of climate change. Through the use of the national citizen science project titled Project BudBurst,... (View More) students explore the impacts of climate variation on plant species distribution. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)

This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)

Materials Cost: $1 - $5 per group of students

This activity allows participants to build a paper model of the GPM Core Observatory and learn about the technology the satellite uses to measure precipitation from space. Directions explain how to cut, fold and glue the individual pieces together... (View More) to make the model. The accompanying information sheet has details about the systems in the satellite including the Dual-frequency Precipitation Radar (DPR), the GPM Microwave Imager (GMI), the High Gain Antenna, avionics and star trackers, propulsion system and solar array, as well as a math connection and additional engineering challenges. (View Less)

Materials Cost: 1 cent - $1 per group of students

In this lesson, students observe the surface of rotating potatoes to help them understand how astronomers can sometimes determine the shape of asteroids from variations in reflective brightness.

In this activity, students solve exponential equations where the unknown is contained in the exponent. Students learn that taking base-10 or base-2 logs pulls down the exponent, allowing the unknown to be isolated and solved. This activity is... (View More) activity C3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations,... (View More) learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use log tapes and base-two slide rules as references to graph exponential functions and log functions in base-10 and base-2. Students discover that exponential and log functions are inverse, reflecting across the y = x axis... (View More) as mirror images. This is activity E2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)