## You are here

Home ›Now showing results **1-10** of **12**

Carl Sagan once claimed that the most important lesson we learn from studying the stars is perspective. To address this concept, this activity offers a scale model of the solar system to be evaluated. There are many versions of solar system scale... (View More) models available; this one is unique for its large scale chosen, the quality of the scaled objects, and the supplementary materials and information provided. The model is extended to include interaction and discovery on the part of learners, and suggested extensions. The set of materials includes a book about the solar system, developed from NASA's "From Earth to the Solar System" (FETTSS) imagery, and appropriate for use with the model. (View Less)

This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)

Materials Cost: $1 - $5 per group of students

In this lesson, students observe the surface of rotating potatoes to help them understand how astronomers can sometimes determine the shape of asteroids from variations in reflective brightness.

Using a graphing calculator and a Norland Research calculator robot, students create programs in TI-BASIC to direct their robot through a variety of tasks. Ten robot missions and three exploration extensions are included in this lesson booklet.... (View More) Beginning missions include step-by-step programming instructions; the missions become increasingly challenging throughout. (View Less)

Materials Cost: Over $20 per group of students

This is an activity about measuring angular size and understanding the solar and lunar proportions that result in solar eclipses. Learners will use triangles and proportions to create a shoebox eclipse simulator. They will then apply what they learn... (View More) about angular size to predict the diameter and distance of one object that can be eclipsed by another. They will also complete three journal assignments to record observations and conceptual understanding. This activity derives from those demonstrated in the NASA CONNECT television series episode, titled Path of Totality. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students add and subtract log distances on their Log Tapes to discover that the corresponding numbers multiply and divide. This will lead them to an experiential understanding of the laws of logarithms. This is activity B2 in the... (View More) "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use their Log Tapes as a reference for ordered pairs, and graph positive numbers as a function of their base-10 logarithms. They extend each plotted point to the vertical axis, thereby generating a logarithmic scale that... (View More) cuts and folds into an improvised slide rule. This is activity E1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct Log Rulers, finely calibrated in base-10 exponents and numbers (logs and antilogs). They practice reading these scales as accurately as possible, listing all certain figures plus one uncertain figure. This is... (View More) activity D1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)