You are here
Home ›Narrow Search
Now showing results 1-10 of 16
Designed to help students learn about NASA's missions currently studying the sun and its effects on Earth, this second of two storybooks in the series focuses on the importance of collaboration in data acquisition and analysis. Through a series of... (View More) activities, students mine pre-existing data, find trends and patterns in that data, and collect and share related data. The guide concludes with a data challenge for students to design their own experiment using NASA's Magnetospheric Multiscale (MMS) satellites. The book contains teacher companions/guides with instructions and tips for classroom implementation (see Related & Supplemental URLs). (View Less)
This is an activity about Earth's magnetic field. Learners will construct a soda bottle magnetometer, collect data, and analyze the results to detect magnetic storm events. Ideally, learners should collect data for at least a month. If several... (View More) months are available for data collection, this is ideal. This is the first activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is an activity about area and volume. Learners will use fabrication software to determine the optimal size of a satellite which can fit within a given rocket cylinder. To complete this activity, fabrication software is required (an example is... (View More) suggested in the lesson). This is the sixth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is an activity about satellite design. Learners will create a satellite model to determine which shape will provide a steady minimum current output from solar panels, given a fixed position light source. After, as a group, they will assess... (View More) whether their satellite model would work in real life and how their actions were similar to what engineers do. This is the fifth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide curriculum. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
The 9-session NASA Family Science Night program emables middle school children and their families to discover the wide variety of science, technology, engineering, and mathematics being performed at NASA and in everyday life. Family Science Night... (View More) programs explore various themes on the Sun, the Moon, the Stars, and the Universe through fun, hands-on activities, including at-home experiments. Instructions for obtaining the facilitator's guide are available on the Family Science Night site. (View Less)
This is an activity about cause and effect. Learners will calculate the approximate travel time of each solar wind event identified in the previous activity in this set to estimate the time at which the disturbance would have left the Sun. Then,... (View More) they will examine solar images in an attempt to identify the event on the Sun that may have caused the specific solar wind episode. This is Activity 12 of the Space Weather Forecast curriculum. (View Less)
This is an activity about searching online data archives for solar wind events. Learners will find at least three episodes of increased solar wind activity impacting Earth using direct measurements of solar wind velocity and density. Then, they will... (View More) characterize each events by its rise time, the time it takes for the solar wind speed to rise from normal levels to the peak speed of the event, and the percentage increase in solar wind velocity. This is Activity 11 of the Space Weather Forecast curriculum. (View Less)
This is an activity about modeling the apparent motion of the Sun as seen from Earth. Learners will use a flashlight, toothpick, and styrofoam model Sun to mimic the relative shadow motion produced by a sundial. The activity will help learners... (View More) understand that because the Earth rotates from West to East, the Sun appears to rise in the East and set in the West. This is Activity 6 of the Sun As a Star afterschool curriculum. (View Less)
This is an activity about light and shadow. Learners will make outdoor sundials. They will use the sundial and the length of the shadow that is cast to explore the relationship between the size and position of the shadows and the position of the Sun... (View More) in the sky. to measure the lengths of the shadows made directly by the Sun at various times. The activity requires access to a sunny outdoor location. This is Activity 5 of the Sun As a Star afterschool curriculum. (View Less)
This is an activity about comparing images of the Sun in different wavelengths of light. Learners will examine solar images taken by the SOHO spacecraft to look for differences in the features that are visible in the various wavelengths of light.... (View More) This activity requires access to the internet to view or print images of the Sun. This is Activity 7 of the Sun As a Star afterschool curriculum. (View Less)