## You are here

Home ›Now showing results **1-10** of **11**

This is an activity about the orbit of the ISS around the Earth. Leaners will investigate the relationship between speed, distance, and orbits as they investigate how quickly the ISS can travel to take a picture of an erupting volcano. This is... (View More) mathematics activity 2 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)

This is an activity about keeping astronauts safe from debris in space. Learners will investigate the relationship between mass, speed, velocity, and kinetic energy in order to select the best material to be used on a space suit. They will apply an... (View More) engineering design test procedure to determine impact strength of various materials. This is engineering activity 2 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)

This is an activity about using solar arrays to provide power to the space station. Learners will solve a scenario-based problem by calculating surface areas and determining the amount of power or electricity the solar arrays can create. This is... (View More) mathematics activity 1 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)

This is an activity about structures in space. Learners will construct two different types of trusses to develop an understanding of engineering design for truss structures and the role of shapes in the strength of structures. For optimum completion... (View More) - this activity should span 3 class periods to allow the glue on the structures to dry. This is engineering activity 1 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)

This book contains 24 illustrated math problem sets based on a weekly series of space science problems. Each set of problems is contained on one page. The problems were created to be authentic glimpses of modern science and engineering issues, often... (View More) involving actual research data. Learners will use mathematics to explore problems that include basic scales and proportions, fractions, scientific notation, algebra, and geometry. (View Less)

This is a lesson about statistics in science as it applies to the measurement of dust in space. Learners will be introduced to the concepts of error analysis, including standard deviation. They will apply the knowledge of averages (means), standard... (View More) deviation from the mean, and error analysis to their own distribution of heights and then to the Student Dust Counter (SDC) data to determine the issues associated with taking data including error and noise. (View Less)

This is a lesson about the distribution of dust in the solar system. Learners will use data from the Student Dust Counter (SDC) Data Viewer to establish any trends in the distribution of dust. Students record the number of dust particles, or hits,... (View More) recorded by the instrument and the average mass of the particles in a given region. (View Less)

This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)

This activity focuses on the question, What do active galaxies look like when viewed from different distances? Students work in small groups to learn about the small angle formula, construct a template, and use it to correctly measure the angular... (View More) size of a person. Students then use the Active Galaxies Poster to measure the angular size of a galaxy. Materials are commonly available or inexpensive items, e.g., scissors, cardboard, construction paper, calculator, protractor, meter stick or measuring tape). Includes background information, glossary, essential questions, extension activities, transfer activities, adaptations for visually-impaired students, and an answer key. This is activity 2 of 3 in the Active Galaxies Educators Guide. (View Less)

This is an activity about observing the Sun. Learners will construct a pinhole projector to project an image of the Sun, observe and record the size of the projected image, and calculate the diameter of the Sun using the measurements and a known... (View More) distance to the Sun. This activity is from the Touch the Sun educator guide. (View Less)

Materials Cost: 1 cent - $1 per group of students