## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **101-110** of **138**

In these activities, students investigate how gamma ray bursts emit energy in beams (as opposed to emitting light in all directions) and investigate the implications of this on the total number of gamma ray bursts seen in the universe. This activity... (View More) uses Gamma-ray Bursts as an engagement tool to teach selected topics in physical science and mathematics. In addition, the guide features background information, assessment information, student worksheets, extension and transfer activities, and detailed information about the physical science and mathematics content standards for grades 9-12. This is Activity 4 of 4 in the guide which accompanies the educational wall sheet, titled Angling for Gamma-ray Bursts. (View Less)

This is a lesson about Saturn. Learners will listen to a read-aloud of the history of Saturn discoveries. Next, they learn two reading comprehension strategies (visualizing and wondering) that they can use to become more powerful readers of... (View More) nonfiction text. Finally, students share their work with partners and the class. This is lesson 3 of 12 in the Mission to Saturn Educators Guide, Reading Writing Rings, for grades 3-4. (View Less)

This is a lesson about distances in space. Learners will create an outdoor, to-scale model of the distances between the Sun, Earth, and Saturn. Next you will conduct a guided walk to Saturn - which gives students an understanding of how far away... (View More) Saturn is from Earth and the Sun. Like enthusiastic travelers everywhere, students will write a “postcard home” to share their exciting trip. This is lesson 4 of 10 in "Reading, Writing & Rings!" for grades 1-2. (View Less)

To determine if data values are reasonable, students need to understand the units of measurement and be able to estimate the expected range of values in data. This activity has groups of students collecting and recording data, changing some of the... (View More) numbers, and challenging each other to identify values that are unreasonable for the data set. Students practice the skills of estimation and recognition of numerical values that are outliers, comparing measurements of common classroom objects and soil moisture. This is a learning activity associated with the Soils Chapter of the GLOBE Teachers Guide. (View Less)

In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations,... (View More) learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use log tapes and base-two slide rules as references to graph exponential functions and log functions in base-10 and base-2. Students discover that exponential and log functions are inverse, reflecting across the y = x axis... (View More) as mirror images. This is activity E2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct Log Rulers, finely calibrated in base-10 exponents and numbers (logs and antilogs). They practice reading these scales as accurately as possible, listing all certain figures plus one uncertain figure. This is... (View More) activity D1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

This kinesthetic activity simulates the process of evolution by natural selection. Students take on the roles of crab-like predators that exhibit one of four variants of feeding appendage: a spoon, fork, knife, and chopsticks. The simulation runs... (View More) for three trials, as the predators use their appendages to harvest pinto beans, with varying success. Students track the frequency of each appendage type through three generations. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this activity, students graph second and third order functions, discovering an inverse relationship between squares and square roots and between cubes and cube roots. Students graph these functions on both linear grid (evenly spaced numbers), and... (View More) a log-log grid (evenly space exponents). Graph lines that curve on linear grids transform into straight lines on the log-log grids, with slopes equal to their exponential powers. This activity is activity E3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this interactive, online activity, students practice estimation skills as they begin to explore the Hubble Deep Field image. Students first give a rough estimate of the number of objects in the image. They then use representative sampling... (View More) techniques to improve upon their original estimates. Finally, they use their estimates to calculate the number of galaxies in the universe. Students can work through the activity independently or in groups. Detailed teacher pages, identified as Teaching Tips on the title page of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This activity is part of the online exploration "The Hubble Deep Field Academy" that is available on the Amazing Space website. (View Less)