## You are here

Home ›Now showing results **1-10** of **12**

Using the diameter of a pencil as a reference, students calculate and construct a line chart to show the relative height of several altitudinal points such as Earth's atmosphere, the beginning of space, commercial airplane flights, and the Hubble... (View More) space telescope. (View Less)

This lesson uses a simple discrepant event to demonstrate the underlying cause for early miscalculation of the size of the Milky Way galaxy. By standardizing the Cepheid period-luminosity relationship without recognizing there were two types of... (View More) Cepheid variable stars with intrinsic differences in absolute magnitude, a distance calculation error occurred. Requires two lamps and two soft-white light bulbs: 25 watt and 60 watt (estimated materials cost is for light bulbs). This lesson is part of the Cosmic Times teachers guide and is intended to be used in conjunction with the 1955 Cosmic Times Poster. (View Less)

This activity uses Dr. Drake's framework to have students consider the implications of each term and make their own estimates of life in the Milky Way galaxy. This activity is part of a guide that was developed in conjunction with the Cosmic... (View More) Questions exhibit and complements a museum visit. However, the activities can also be used independently. The format is flexible, and educators can pick and choose the materials that are most appropriate for their students. (View Less)

In this activity, students survey other people to find out their thoughts about life beyond Earth and compare their ideas with visitors to the Cosmic Questions exhibit. Students can also analyze their survey data to see whether there is any... (View More) variation or patterns in answers from men and women or people of different ages. To do this, students will need to design their own method for tracking demographic data. This activity is part of the "Cosmic Questions Educator's Guide" that was developed to support the Cosmic Questions exhibit. Activities in the guide can be used in conjunction with or independently of the exhibit. (View Less)

In these activities, students investigate how gamma ray bursts emit energy in beams (as opposed to emitting light in all directions) and investigate the implications of this on the total number of gamma ray bursts seen in the universe. This activity... (View More) is part of a unit designed to use gamma-ray bursts - unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)

In this activity, students look at the distribution of aluminum foil balls arranged in a circle on the floor, and compare them to the distribution of gamma-ray bursts on the sky. This activity is part of a unit designed to use gamma-ray bursts -... (View More) unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)

In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations,... (View More) learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use log tapes and base-two slide rules as references to graph exponential functions and log functions in base-10 and base-2. Students discover that exponential and log functions are inverse, reflecting across the y = x axis... (View More) as mirror images. This is activity E2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct Log Rulers, finely calibrated in base-10 exponents and numbers (logs and antilogs). They practice reading these scales as accurately as possible, listing all certain figures plus one uncertain figure. This is... (View More) activity D1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students graph second and third order functions, discovering an inverse relationship between squares and square roots and between cubes and cube roots. Students graph these functions on both linear grid (evenly spaced numbers), and... (View More) a log-log grid (evenly space exponents). Graph lines that curve on linear grids transform into straight lines on the log-log grids, with slopes equal to their exponential powers. This activity is activity E3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)