## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **1-10** of **24**

Emphasizing the synergies between science and engineering, these video clips highlight the research of professional ocean scientists and engineers in various disciplines. The clips are accompanied by additional relevant content including images,... (View More) data visualizations, graphs, animations, and other information. Content has been organized into more than a dozen thematic areas such as Solving Old Problems with New Technology and Small Scale Observations and Large Scale Ideas. All content has been aligned with science and engineering practices from the Next Generation Science Standards, including "asking questions and solving problems" and "planning and carrying out investigations," providing applicable resources for teachers who want to provide role models of effective practice for their students. (View Less)

This book contains 24 illustrated math problem sets based on a weekly series of space science problems. Each set of problems is contained on one page. The problems were created to be authentic glimpses of modern science and engineering issues, often... (View More) involving actual research data. Learners will use mathematics to explore problems that include basic scales and proportions, fractions, scientific notation, algebra, and geometry. (View Less)

This is an online set of information about astronomical alignments of ancient structures and buildings. Learners will read background information about the alignments to the Sun in such structures as the Great Pyramid, Chichen Itza, and others.... (View More) Next, the site contains 10 short problem sets that involve a variety of math skills, including determining the scale of a photo, measuring and drawing angles, plotting data on a graph, and creating an equation to match a set of data. Each set of problems is contained on one page and all of the sets utilize real-world problems relating to astronomical alignments of ancient structures. Each problem set is flexible and can be used on its own, together with other sets, or together with related lessons and materials selected by the educator. This was originally included as a folder insert for the 2010 Sun-Earth Day. (View Less)

This is an activity about coronal mass ejections. Learners will calculate the velocity and acceleration of a coronal mass ejection, or CME, based on its position in a series of images from the Large-Angle Spectrometric Coronograph (LASCO) instrument... (View More) on NASA's Solar and Heliospheric Observatory (SOHO) spacecraft. This is Activity 2 of a larger resource, Exploring the Sun. The NASA spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO. (View Less)

This website provides an overview of ocean surface circulation. Satellite and model data allows high school students to investigate circulation patterns, navigation, associated weather and climate, natural hazards and marine resources. There are... (View More) five lessons affiliated with this site; the teacher and student guides to each can be accessed directly from the home page. (Note that these lessons are cataloged individually.) Other links provide information on background, impact, gathering data, researchers, data resources and a glossary. There are also online quizzes on the home page on navigation, coriolis force, satellites, ocean warming, energy balance, and ocean gyres. (View Less)

You can find statistics in every day life - this example explains how to calculate the chance of a member of a committee is receiving a bribe. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created... (View More) by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is a lesson about the path of one xenon ion through an ion propulsion engine. Learners will focus on what a single xenon ion sees and does as it goes through the reactions and processes that provide the ion jet propulsion engine's thrust. They... (View More) will learn to adopt an informed, experimental method for use in a later lesson. A tightly-scripted slide-by-slide presentation is provided. Preconceptions are discussed. This is activity 4 of 5 in Structure and Properties of Matter: Ion Propulsion. (View Less)

Mathematicians often argue that anything which can be represented numerically or algebraically can also be represented geometrically. This is perhaps true even to the extent that simple numeric calculations can be demonstrated geometrically. This... (View More) example illustrates one such geometric process of addition. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is a booklet containing 96 mathematics problems involving skills relating to algebra, fractions, graph analysis, geometry, measurement, scale, calculus, and other topics. Learners will use mathematics to explore NASA science and space... (View More) exploration content relating to space weather, the study of the Sun and its interactions with Earth. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities, and there are problem sets for learners in grades 3-5, 6-8 and 9-12. This booklet can be found on the Space Math@NASA website. (View Less)

This is a resource that explains the rationale behind the multiple time zone divisions in the United States. Learners will work through a problem set to practice calculating the time in one time zone, given the time in another time zone. This is... (View More) activity 9 from the educator guide, Exploring Magnetism: Magnetic Mysteries of the Aurora. (View Less)