## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **91-100** of **116**

This is a booklet containing 20 problem sets that involve a variety of math skills, including equations and substitution, time calculations, reading, algebra, and more. Each set of problems is contained on one page. Learners will use mathematics to... (View More) explore space science topics related to our Sun, auroras, solar features, space weather, sunspots, and solar storms. This booklet can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 11 problem sets and 9 "Extra for Experts" challenges. Learners use provided textual information to determine the scale (e.g., kilometers per millimeter) for images of the lunar surface, Mars, planets, stars and galaxies... (View More) and then identify the smallest and largest features in the images according to their actual physical sizes. These problems involve measurement, dividing whole numbers, decimal mathematics, and scaling principles. Each set of problems is contained on one page. This booklet can be found on the Space Math@NASA website. (View Less)

Problem: How do you measure an angle with a protector, when that angle is between two solid walls? This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math... (View More) and science topics taught in K-12 classes have real world applications. (View Less)

This is an activity about the mathematics of oscillation. Using data obtained in ninth and tenth activities in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide, learners will plot the formula... (View More) X(t)=X(0)cos(ft) or X(t)=X(0)sin(ft), depending on the data obtained during the oscillation experiments. Then, the mathematical model for oscillation is further refined by including damping. This is the eleventh activity in the guide and requires prior use and construction of a soda bottle magnetometer. (View Less)

This is a mathematical lesson utilizing algebra to investigate Earth's magnetosphere. Learners will solve algebraic distance equations that will show how the distance to the Earth's magnetopause depends on the incoming solar wind pressure. This is... (View More) the twentieth and final activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

This is a lesson about the mathematics of auroras. Learners will be exposed to the mathematical formulas that are used to estimate how much magnetic energy is available in the magnetic tail region of Earth. This is the nineteenth activity in the... (View More) Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

On this worksheet, students are provided hurricane data by decade and are asked to calculate frequencies and averages. The resource is part of the teacher's guide accompanying the video, NASA SCI Files: The Case of the Phenomenal Weather. Lesson... (View More) objectives supported by the video, additional resources, teaching tips and an answer sheet are included in the teacher's guide. (View Less)

In this activity, students learn about the advantages of the metric system, by comparing the ease of calculation and conversion between the English and metric systems of measurement. This resource is from PUMAS - Practical Uses of Math and Science -... (View More) a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This math example explains what celestial objects a person can see with the unaided eye from the vantage points of Earth and Mars, using simple math, algebra and astronomical distance information. This resource is from PUMAS - Practical Uses of Math... (View More) and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is an activity about using large numbers in astronomy. Learners will first estimate how long it would take to count to a billion, if it was a full-time job. Then, they will judge their estimates using a calculator to get a more definitive... (View More) answer. Finally, they will calculate the time or speed needed to travel to the star, Proxima Centauri. This is Actividad 13.4 as part of El Universo a Sus Pies, a Spanish-language curriculum, available for purchase. (View Less)